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Example. Let E = R be the free module of dimension q. Then:

0 if 05k<yg

F"(E):{R if k>gq.

This is immediate from the definitions and the fact that the only relation of a
basis for E is the trivial one.

The Fitting ideal F(E) is called the zero-th or initial Fitting ideal. In some
applications it is the only one which comes up, in which case it is called “ the”
Fitting ideal F(E) of E. It is the ideal generated by all ¢ x ¢ determinants in
the matrix of relations of ¢ generators of the module.

For any module E we let anng(E) be the annihilator of E in R, that is the
set of elements « € R such that aE = 0.

Proposition 2.5. Suppose that E can be generated by q elements. Then
(anng(E))? < F(E) < anng(E).
In particular, if E can be generated by one element, then
F(E) = anng(E).

Proof. Let x4, ..., x, be generators of E. Let ay,...,q, be elements of R
annihilating E. Then the diagonal matrix whose diagonal components are
ai,...,a, is a matrix of relations, so the definition of the Fitting ideal shows
that the determinant of this matrix, which is the product a, ---a, lies in
I(E) = Fo(E). This proves the inclusion

anng(E)! < F(E).

Conversely, let 4 be a g x g matrix of relations between x,, ..., x,. Then
det(A)x; = 0 for all i so det(4) € anng(E). Since F(E) is generated by such
determinants, we get the reverse inclusion which proves the proposition.

Corollary 2.6. Let E = R/a for some ideal a. Then F(E) = a.

Proof. The module R/a can be generated by one element so the corollary
is an immediate consequence of the proposition.

Proposition 2.7. Ler
0O-E->E->E -0

be an exact sequence of finite R-modules. For integers m, n = 0 we have

Fu(EVF(E") © F,p . (E).
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In particular for F = F,.
F(EF(E") c F(E).
Proof. We may assume E' is a submodule of E. We pick generators
Xy,...,X, of E" and elements y,, ..., y, in E such that their images )i, ..., y;
in E” generate E”. Then (x, y) is a family of generators for E. Suppose first that

m<pand n<q Let A be a matrix of relations among y7i, ..., y, with g
columns. If (a,, ..., a,) is such a relation, then

ay; + -+ ay,eE
so there exist elements by, ..., b, € R such that

Zaiyi + ijxj = 0

Thus we can find a matrix B with p columns and the same number of rows as
A such that (B, A) is a matrix of relations of (x, y). Let C be a matrix of relations

of (xy,...,x,). Then
B A
c 0

is a matrix of relations of (x, y). If D" isa (q — n) x (g — n) subdeterminant of
Aand D’ isa (p — m) x (p — m) subdeterminant of C then D"D’ is a

(p+g-—m—-—nx(p+q—m-n)

B A
(e o)

and D'D’' € F,,, (E). Since F,(E') is generated by determinants like D’ and
F (E") is generated by determinants like D", this proves the proposition in the
present case.

Ifm > pandn > gthenF,, . (E) = F,(E") = F,(E") = Rso the proposition
is trivial in this case.

Saym < pand n > q. Then F(E") = R = F(E") and hence

subdeterminant of the matrix

FA(ENF(E") = F(E")F,(E") = Fp(E) © Fpp s ,(E)

where the inclusion follows from the first case. A similar argument proves
the remaining case with m > p and n £ q. This concludes the proof.

Proposition 2.8. Let E', E" be finite R-modules. For any integer n = 0 we
have

F(E@E)= } F(E)F(E").

r+s=n
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Proof. Letx,...,x,generate E' and y,, ..., Y, generate E”. Then (x, y)
generate E' @ E”. By Proposition 2.6 we know the inclusion

Y. FAE)F(E") = F(E @ E"),

so we have to prove the converse. If n = p + ¢ then we can take r = p and
s = g in which case

F(E) = F(E") = F,(E) = R

and we are done. So we assume n < p + ¢. A relation between (x, y) in the
direct sum splits into a relation for (x) and a relation for (y). The matrix of
relations for (x, y) is therefore of the form

A0
C“(o m)

where A’ is the matrix of relations for (x) and A” the matrix of relations for
(y). Thus

FAE @ E") = ¥ 1,.0-,C)
C
where the sum is taken over all matrices C as above. Let D be a
(pt+q-nx(p+qg—n

subdeterminant. Then D has the form

,_|B o
0 B

where B’ is a k' x (p — r) matrix, and B” is a k" x (¢ — s) matrix with some
positive integers k', k", r, s satisfying
K+k"=p+qg—n and r+s=n
Then D = Qunless kK’ = p — rand k" = ¢ — s. In that case
D = det(B')det(B") € F(E)F(E"),

which proves the reverse inclusion and concludes the proof of the proposition.

Corollary 2.9. Let

E = é R/a;
i=1
where a; is an ideal. Then F(E) = a, - - a,.

Proof. This is really a corollary of Proposition 2.8 and Corollary 2.6.
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§3. UNIVERSAL DERIVATIONS
AND THE DE RHAM COMPLEX

In this section, all rings R, A, etc. are assumed commutative.

Let A be an R-algebra and M an A-module. By a derivation D: 4 - M
(over R) we mean an R-linear map satisfying the usual rules

D(ab) = aDb + bDa.

Note that D(1) = 2D(1) so D(1) = 0, whence D(R) = 0. Such derivations form
an A-module Derg(4, M)inanatural way, where aD is defined by (aD)(b) = aDb.
By a universal derivation for 4 over R, we mean an 4-module Q, and a

derivation
d:A-Q

such that, given a derivation D : A — M there exists a unique A-homomorphism
f:Q — M making the following diagram commutative:

A—2 50

\

It is immediate from the definition that a universal derivation (d, Q) is uniquely
determined up to a unique isomorphism. By definition, we have a functorial
isomorphism

Derg(4, M) ~ Hom (Q, M).

We shall now prove the existence of a universal derivation.
The following general remark will be useful. Let

fl’fZ:A_’B

be two homomorphisms of R-algebras, and let J be an ideal in B such that
J? = 0. Assume that f; = f, mod J; this means that f;(x) = f,(x) mod J for
all x in A. Then

D=f2_f1

is a derivation. This fact is immediately verified as follows:

fa(ab) = f(a) f,(b) = [fi(a) + D(@)][f1(b) + D(b)]
= fi(ab) + f1(b)D(a) + fi(a)D(b).
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But the A-module structure of J is given via f; or f, (which amount to the same
thing in light of our assumptions on f, f5), so the fact is proved.

Let the tensor product be taken over R.

Letmy,:A® A —> A be the multiplication homomorphism, such that
m (a ® b) = ab. Let J = Ker m,. We define the module of differentials

QA/R = J/JZ,

as an ideal in (4 ® A)/J2. The A-module structure will always be given via the
embedding on the first factor:

A->A®A by a—a® 1
Note that we have a direct sum decomposition of A-modules
ARA=(AR1)DJ,
and therefore

A=A 1)®J/J>
Let

d:A - J/J* be the R-linear mapar— 1 ® a — a ® 1 mod J2.

Taking fi:at>a® 1l and f,:a — 1 ® a, we see that d = f, — f,. Hence d is
a derivation when viewed as a map into J/J2.
We note that J is generated by elements of the form

Y x; dy;.
Indeed, if )’ x; ® y; € J, then by definition ) x;y; = 0, and hence
in®,\’i = in(l Qyi—y®1,

according to the A-module structure we have put on A ® A (operation of 4 on
the left factor.)

Theorem 3.1. The pair (J/J? d) is universal for derivations of A. This
means: Given a derivation D: A — M there exists a unique A-linear map
f:J/J* > M making the following diagram commutative.

A—2 s g2

\/
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Proof. There is a unique R-bilinear map
ffA® A—-> M givenby x & yr— xDy,

which is A-linear by our definition of the 4-module structure on A ® A. Then
by definition, the diagram is commutative on elements of 4, when we take f
restricted to J, because

f®y—-y®1)=Dy.

Since J/J? is generated by elements of the form x dy, the uniqueness of the map
in the diagram of the theorem is clear. This proves the desired universal
property.

We may write the result expressed in the theorem as a formula

Derg(4, M) ~ Hom ,(J/J?, M).

The reader will find exercises on derivations which give an alternative way of
constructing the universal derivation, especially useful when dealing with
finitely generated algebras, which are factors of polynomial rings.

I insert here without proofs some further fundamental constructions, im-
portant in differential and algebraic geometry. The proofs are easy, and provide
nice exercises.

Let R — A be an R-algebra of commutative rings. For i = 0 define

i i Ol
Q:1/11 = /\l QA/R9
where QJ = A.

Theorem 3.2. There exists a unique sequence of R-homomorphisms
di: Qlyp — Qg
such that for » € Q' and n € Q’ we have
dw An) =do An+ (=1 o Ady

Furthermore d-d = 0.

The proof will be left as an exercise.
Recall that a complex of modules is a sequence of homomorphisms
cee s i1 45 pi dS pitl
such that d’ ¢ d'! = 0. One usually omits the superscript on the maps d. With
this terminology, we see that the ),z form a complex, called the De Rham
complex.
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Theorem 3.3. Let k be a field of characteristic 0, and let A = k[X,, ..., X,]
be the polynomial ring in n variables. Then the De Rham complex

0-k->A->Qy > >, -0
is exact.
Again the proof will be left as an exercise. Hint: Use induction and

integrate formally.
Other results concerning connections will be found in the exercises below.

§4. THE CLIFFORD ALGEBRA

Let k be a field. By an algebra throughout this section, we mean a k-algebra
given by a ring homomorphism k — A such that the image of & is in the center
of A.

Let E be a finite dimensional vector space over the field k, and let g be a
symmetric form on E. We would like to find a universal algebra over k, in which
we can embed E, and such that the square in the algebra corresponds to the value
of the quadratic form in E. More precisely, by a Clifford algebra for g, we
shall mean a k-algebra C(g), also denoted by C,(E), and a linear map
p: E— C(g) having the following property: If ¢ : E — L is a linear map of F
into a k-algebra L such that

Px)? = g(x, x) - 1 (1 = unit element of L)

for all x € E, then there exists a unique algebra-homomorphism

CWY) =y,:Clg~L

such that the following diagram is commutative:

E—"—C(9)
\ A
L

By abstract nonsense, a Clifford algebra for g is uniquely determined, up to a
unique isomorphism. Furthermore, it is clear that if (C(g), p) exists, then C(g)
is generated by the image of p, i.e. by p(E), as an algebra over k.

We shall write p = p, if it is necessary to specify the reference to g explicitly.
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We have trivially

px)? = g(x, x) - 1

for all x € E, and

p)p(y) + p(y)p(x) = 2g(x, y) * 1

as one sees by replacing x by x + y in the preceding relation.

Theorem 4.1. Let g be a symmetric bilinear form on a finite dimensional
vector space E over k. Then the Clifford algebra (C(g), p) exists. The map p
in injective, and C(g) has dimension 2" over k, if n = dim E.

Proof. Let T(E) be the tensor algebra as in Chapter XVI, §7. In that algebra,
we let I, be the two-sided ideal generated by all elements

x®x—gx,x)-1forxeE.
We define C,(E) = T(E) /1 - Observe that E is naturally embedded in T(E) since
TEY=kDEDESQE) D --.

Then the natural embedding of E in TE followed by the canonical homomorphisms
of T(E) onto Cy(E) defines our k-linear map p : E— Cy(E). It is immediate from
the universal property of the tensor product that Cy(E) as just defined satisfies
the universal property of a Clifford algebra, which therefore exists. The only
problem is to prove that it has the stated dimension over k.

We first prove that the dimension is = 2”. We give a proof only when
the characteristic of k is # 2 and leave characteristic 2 to the reader. Let
{v;,..., v,} be an orthogonal basis of F as given by Theorem 3.1 of Chapter
XV. Let ¢; = Y(v;), where ¢ : E — L is given as in the beginning of the sec-
tion. Let ¢; = g(v;, v;). Then we have the relations

e} =c;, ee = —ee foralli+ ]

This immediately implies that the subalgebra of L generated by (E) over k is
generated as a vector space over k by all elements

efv--emwithy, =0orlfori=1,...,n.

Hence the dimension of this subalgebra is = 2". In particular, dim Cy(E) = 2"
as desired.

There remains to show that there exists at least one : E — L such that L
is generated by (E) as an algebra over k, and has dimension 2”; for in that
case, the homomorphism , : C,(E) — L being surjective, it follows that dim
C,(E) = 2" and the theorem will be proved. We construct L in the following
way. We first need some general notions.

Let M be a module over a commutative ring. Let i, j € Z/2Z. Suppose M
is a direct sum M = M, ® M, where 0, 1 are viewed as the elements of Z/2Z.
We then say that M is Z/2Z-graded. If M is an algebra over the ring, we say
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it is a Z/2Z-graded algebra if M;M; C M, ; for all i, j € Z/2Z. We simply
say graded, omitting the Z/2Z prefix when the reference to Z/2Z is fixed
throughout a discussion, which will be the case in the rest of this section.

Let A, B be graded modules as above, withA = A, D A, and B = B, D B,.
Then the tensor product A ® B has a direct sum decomposition

A®B=(A ®B,
ij
We define a grading on A ® B by letting (A ® B), consist of the sum over indices
i,jsuchthati + j = 0 (in Z/2Z), and (A ® B), consist of the sum over the
indices i, j such thati + j = 1.
Suppose that A, B are graded algebras over the given commutative ring. There
is a unique bilinear map of A ® B into itself such that

(a @ b)a ®b) = (—DVaa’ @ bb’

ifa’ € A; and b € B;. Just as in Chapter XVI, §6, one verifies associativity and
the fact that this product gives rise to a graded algebra, whose product is called
the super tensor product, or super product. As a matter of notation, when we
take the super tensor product of A and B, we shall denote the resulting algebra
by

AQ, B

to distinguish it from the ordinary algebra A ® B of Chapter XVI, §6.

Next suppose that £ has dimension 1 over k. Then the factor polynomial ring
k[X]/(x*> = ¢,) is immediately verified to be the Clifford algebra in this case.
We let #; be the image of X in the factor ring, so C,(E) = k[1,] with 1} = c|.
The vector space E is imbedded as k7, in the direct sum k & k.

In general we now take the super tensor product inductively:

Cy(E) = klt)] By, kl1r] B, - -+ By, k1], with k[1] = k[X)/(X> — ¢;).
Its dimension is 2". Then E is embedded in C (E) by the map
av, + - +au, > at - Da,t,.

The desired commutation rules among ¢;, t; are immediately verified from the
definition of the super product, thus concluding the proof of the dimension of
the Clifford algebra.

Note that the proof gives an explicit representation of the relations of the
algebra, which also makes it easy to compute in the algebra. Note further that
the alternating algebra of a free module is a special case, taking ¢; = 0 for all
i. Taking the c; to be algebraically independent shows that the alternating algebra
is a specialization of the generic Clifford algebra, or that Clifford algebras are
what one calls perturbations of the alternating algebra. Just as for the alternating
algebra, we have immediately from the construction:

Theorem 4.2. Let g, g' by symmetric forms on E, E' respectively. Then we
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have an algebra isomorphism
C(g®g) = Cg &,L(9").

Examples. Clifford algebras have had increasingly wide applications in
physics, differential geometry, topology, group representations (finite groups
and Lie groups), and number theory. First, in topology I refer to Adams [Ad 62]
and [ABS 64] giving applications of the Clifford algebra to various problems
in topology, notably a description of the way Clifford algebras over the reals
are related to the existence of vector fields on spheres. The multiplication in the
Clifford algebra gives rise to a multiplication on the sphere, whence to vector
fields. [ABS 64] also gives a number of computations related to the Clifford
algebra and its applications to topology and physics. For instance, let E = R”
and let g be the negative of the standard dot product. Or more invariantly, take
for E an n-dimensional vector space over R, and let g be a negative definite
symmetric form on E. Let C,, = C(g).

The operation

1, Qv Qv =& - Quv)*forv, e E

induces an endomorphism of T"(E) for r = 0. Since v ® v — g(v, v) - 1 (for
v € E) is invariant under this operation, there is an induced endomorphism
*:C,— C,, which is actually an involution, that is x** = x and (xy)* = y*x*
for x € C,,. We let Spin(n) be the subgroup of units in C,, generated by the unit
sphere in E (i.e. the set of elements such that g(v, v) = —1), and lying in the
even part of C,. Equivalently, Spin(n) is the group of elements x such that
xx* = 1. The name dates back to Dirac who used this group in his study of elec-
tron spin. Topologists and others view that group as being the universal cover-
ing group of the special orthogonal group SO(n) = SU,(R).

An account of some of the results of [Ad 62] and [ABS 64] will also be
found in [Hu 75], Chapter 11. Second I refer to two works encompassing two
decades, concerning the heat kernel, Dirac operator, index theorem, and number
theory, ranging from Atiyah, Bott and Patodi [ABP 73] to Faltings [Fa 91], see
especially §4, entitled “The local index theorem for Dirac operators”. The vector
space to which the general theory is applied is mostly the cotangent space at a
point on a manifold. I recommend the book [BGV 92], Chapter 3.

Finally, I refer to Brocker and Tom Dieck for applications of the Clifford
algebra to representation theory, starting with their Chapter I, §6, [BtD 85].
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EXERCISES

1. Let E be a finite dimensional vector space over a field k. Letx,, ..., x, be elements of E
such that x; A --- A x, # 0, and similarly y; A --- Ay, # 0. If cek and

X{ A AXp=CYL Ao A Y,

show that x,,..., x, and y;,..., y, generate the same subspace. Thus non-zero
decomposable vectors in /\PE up to non-zero scalar multiples correspond to
p-dimensional subspaces of E.

2. Let E be a free module of dimension n over the commutative ring R. Let f:E—> E
be a linear map. Let o,(f) = tr /\'(f), where /\'(f) is the endomorphism of \"(E)
into itself induced by f. We have

%w(f) =1  a(f)=t(f), alf)=detf,
and a,(f) = 0 if r > n. Show that

det(1 + f) = Y a(f).
rz20

[Hint: As usual, prove the statement when f is represented by a matrix with variable
coefficients over the integers.] Interpret the «,(f) in terms of the coefficients of the
characteristic polynomial of f.

3. Let E be a finite dimensional free module over the commutative ring R. Let EV be
its dual module. For each integer r = 1 show that /\’E and /\’E V are dual modules
to each other, under the bilinear map such that

(O A AT, O A A D)) > det (0, 1))
where (v;, v;) is the value of v; on v;, as usual, for v; € E and v; € EV.

4. Notation being as in the preceding exercise, let F be another R-module which is free,

finite dimensional. Let f: E — F be a linear map. Relative to the bilinear map of the

preceding exercise, show that the transpose of A'f is /\"(f), ie. is equal to the r-th
alternating product of the transpose of f.

5. Let R be a commutative ring. If E is an R-module, denote by L,(E) the module of
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r-multilinear alternating maps of E into R itself (i.e. the r-multilinear alternating
forms on E). Let LYE) = R, and let

QE) = @ LyE).
r=0

Show that Q(E) is a graded R-algebra, the multiplication being defined as follows. If
we L(E) and y € L¥(E), and vy, . .., v, are elements of E, then

((U A lp)(vl’ DR ] vr+s) = Z E(O-)(U(valv RS ] Uur)d/(ua(r+1)’ AR ] va’s)?

the sum being taken over all permutations g of (1, ..., r + s) such that 61 < --- < or
ando(r + 1) < --- < os.

Derivations

In the following exercises on derivations, all rings are assumed commutative. Among
other things, the exercises give another proof of the existence of universal derivations.

Let R — A be a R-algebra (of commutative rings, according to our convention).
We denote the module of universal derivations of A over R by (d 4z, Q) ), but we do not
assume that it necessarily exists. Sometimes we write d instead of d, ;; for simplicity
if the reference to A/R is clear.

6. Let A = R[X,] be a polynomial ring in variables X,, where a ranges over some
indexing set, possibly infinite. Let Q be the free 4-module on the symbols dX,,, and let

d:A->Q

be the mapping defined by

3
f(xX)y=Y % dx,.

Show that the pair (d, Q) is a universal derivation (d 4z, Q)

7. Let A — B be a homomorphism of R-algebras. Assume that the universal derivations
for A/R, B/R, and B/A exist. Show that one has a natural exact sequence:

B®, QL/R - Qlli/R - Qll?/A -0
[Hint: Consider the sequence
0 — Der 4(B, M) — Derg(B, M) — Derg(4, M)
which you prove is exact. Use the fact that a sequence of B-modules
N->N->N' >0

is exact if and only if its Hom into M is exact for every B-module M. Apply this to the
sequence of derivations.]

8. Let R — A be an R-algebra, and let I be an ideal of 4. Let B = A/I. Suppose that the
universal derivation of A over R exists. Show that the universal derivation of B over R
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also exists, and that there is a natural exact sequence
11> 25 B®, Qlyr = Qye — 0.
[Hint: Let M be a B-module. Show that the sequence
0 — Derg(B, M) — Derg(4, M) » Homg(I/I*, M)

is exact.]

9. Let R — B be an R-algebra. Show that the universal derivation of B over R exists
as follows. Represent B as a quotient of a polynomial ring, possibly in infinitely
many variables. Apply Exercises 6 and 7.

10. Let R —» Abean R-algebra. Let S, be a multiplicative subset of R, and S a multiplicative
subset of 4 such that S, maps into S. Show that the universal derivation of S~ !4 over
So 'Riis (d, S™'Q}r), where

d(afs) = (sd yr(a) — ad 4x(s))/s’.
11. Let B be an R-algebra and M a B-module. On B @ M define a product
b, x)(b', y) = (bb, by + b'x).

Show that B @ M is a B-algebra, if we identify an element b € B with (b, 0). For any
R-algebra A, show that the algebra homomorphisms Homy,, z(A4, B @ M) consist of
pairs (¢, D), where ¢: A — B is an algebra homomorphism, and D: 4 »> M is a
derivation for the A-module structure on M induced by ¢.

12. Let A be an R-algebra. Let ¢: A — R be an algebra homomorphism, which we call an
augmentation. Let M be an R-module. Define an A-module structure on M via ¢, by

a-x = ¢gla)x for acA and xeM.
Write M, to denote M with this new module structure. Let:
Der (4, M) = A-module of derivations for the ¢-module structure on M
I = Kere.

Then Der,(A4, M) is an 4/I-module. Note that there is an R-module direct sum de-
composition 4 = R @ I. Show that there is a natural A-module isomorphism

Qur/IQur ~ I/I?
and an R-module isomorphism
Der,(A4, M) ~ Homg(I/I?, M).

In particular, let n: A — I/I? be the projection of 4 on I/I? relative to the direct sum
decomposition A = R ® I. Then 7 is the universal s-derivation.

Derivations and connections

13. Let R —» A4 be a homomorphism of commutative rings, so we view A4 as an R-algebra.
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Let E be an A-module. A connection on E is a homomorphism of abelian groups
VIE->Qur®4E
such that for a€ 4 and x € E we have
V(ax) = aV(x) + da ® x,

where the tensor product is taken over 4 unless otherwise specified. The kernel of V,
denoted by Ey, is called the submodule of horizontal elements, or the horizontal submodule

of (E, V).
(a) For any integer i > 1, define

Qe = N Q-
Show that V can be extended to a homomorphism of R-modules
ViQur®E-> Qs ®F
by

Vo ® x) =do ® x + (=)o A V(x).

(b) Define the curvature of the connection to be the map
K=V,oV:E> Qi ®,E.

Show that K is an A-homomorphism. Show that
Visio V(o ® x) =0 A K(x)

for we Qi p and xe E.
(c) Let Der(4/R) denote the A-module of derivations of 4 into itself, over R.
Let V be a connection on E. Show that V induces a unique A-linear map

V: Der(A4/R) —» Endg(E)
such that
V(D)(ax) = D(a)x + aV(D)(x).
(d) Prove the formula
[V(D,), V(D2)] — V([Dy, D,]) = (D; A D,)(K).

In this formula, the bracket is defined by [ f,g] = f og — g o f for two endo-
morphisms f, g of E. Furthermore, the right-hand side is the composed mapping

Dy, AD;

ESQ:QE234QE~E
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14.

15.

(a) For any derivation D of a ring 4 into itself, prove Leibniz’s rule:

n

D(xy) = (?)D"(x)n"-%y).
i=0

(b) Suppose A has characteristic p. Show that D? is a derivation.

Let A/R be an algebra, and let E be an A-module with a connection V. Assume that R
has characteristic p. Define

Y : Der(A/R) — Endg(E)
by

¥(D) = (V(D) — V(D?).

Prove that (D) is A-linear. [Hint: Use Leibniz’s formula and the definition of a
connection.] Thus the image of ¥ is actually in End ,(E).

Some Clifford exercises

16.

17.

18.

Let C,(E) be the Clifford algebra as defined in §4. Define Fi(C,)) = (k + E)’, viewing
E as embedded in C,. Define the similar object F;(/\E) in the alternating algebra. Then
Fiyy D F; in both cases, and we define the i-th graded module gr; = F;/F,_,. Show
that there is a natural (functorial) isomorphism

gr(Cy(E)) = gri(/\E).

Suppose that k = R, so E is a real vector space, which we now assume of even
dimension 2m. We also assume that g is non-degenerate. We omit the index g since
the symmetric form is now fixed, and we write C*, C~ for the spaces of degree 0
and 1 respectively in the Z/2Z-grading. For elements x, y in C* or C~, define their
supercommutator to be

{X, y} =xy — (_1)(degx)(deg_\')yx_
Show that F,,,_, is generated by supercommutators.

Still assuming g non-degenerate, let J be an automorphism of (E, g) (i.e.
gUx, Jy) = g(x, y) for all x, y € E) such that J> = —id. Let E. = C QRE be the
extension of scalars from R to C. Then E¢ has a direct sum decomposition

Ec = E& ® Eg

into the eigenspaces of J, with eigenvalues 1 and —1 respectively. (Proof?) There
is a representation of E¢ on /\E¢, i.e. a homomorphism E¢ — Endc(E¢) whereby
an element of E& operates by exterior multiplication, and an element of E¢ operates
by inner multiplication, defined as follows.

For x' € E¢ there is a unique C-linear map having the effect

.
X(xy A Ax) = —22(—1)""(x',x,~)x1 Arrr AX A AX,.
i=1
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19.

20.

21.

Prove that under this operation, you get an isomorphism
C,E)e = Endc(/\E¢).

[Hint: Count dimensions. ]

Consider the Clifford algebra over R. The standard notation is C, if E = R” with
the negative definite form, and C,, if E = R” with the positive definite form. Thus
dim C, = dim C, = 2"
(a) Show that
C, =C C, = H (the division ring of quaternions)

Ci=RXR C; = M4R) (2 X 2 matrices over R)

Establish isomorphisms:
CORC=CXC, CQgH=MC);, H®®gH=MR)
where M (F) = d X d matrices over F. For the third one, with H ® H, define an
isomorphism
f:H ®g H— Homg(H, H) = M,(R)
by f(x ® y)(z) = xzy, where if y = yq + y;i + y,j + ysk then
Y= Yo~ Vil = Yo — ysk.

(a) Establish isomorphisms

Criz = C, 0 C, and w2 ~ Cy & C3.

[Hint: Let {e,, ..., e,.,} be the orthonormalized basis with e = —1. Then for
_the first isomorphism map ¢; > e} @ eje, fori = 1,...,nand map e, ., €,
on1® e and 1 ® e, respectively.]
(b) Prove that C,.4 = C, ® M c(R) (which is called the periodicity property).
(c) Conclude that C,, is a semi-simple algebra over R for all n.

From (c) one can tabulate the simple modules over C,. See [ABS 64], reproduced
in Husemoller [Hu 75], Chapter 11, §6.



Part Four

HOMOLOGICAL
ALGEBRA

In the forties and fifties (mostly in the works of Cartan, Eilenberg, MacLane,
and Steenrod, see [CaE 57}), it was realized that there was a systematic way of
developing certain relations of linear algebra, depending only on fairly general
constructions which were mostly arrow-theoretic, and were affectionately called
abstract nonsense by Steenrod. (For a more recent text, see [Ro 79].) The results
formed a body of algebra, some of it involving homological algebra, which had
arisenintopology, algebra, partial differential equations, and algebraic geometry.
In topology, some of these constructions had been used in part to get homology
and cohomology groups of topological spaces as in Eilenberg-Steenrod [ES 52].
In algebra, factor sets and 1-cocycles had arisen in the theory of group extensions,
and, for instance, Hilbert’s Theorem 90. More recently, homological algebra
has entered in the cohomology of groups and the representation theory of groups.
See for example Curtis-Reiner [CuR 81], and any book on the cohomology of
groups, e.g. [La 96], [Se 64], and [Sh 72]. Note that [La 96] was written to pro-
vide background for class field theory in [ArT 68].

From an entirely different direction, Leray developed a theory of sheaves
and spectral sequences motivated by partial differential equations. The basic
theory of sheaves was treated in Godement’s book on the subject [Go 58].
Fundamental insights were also given by Grothendieck in homological algebra
[Gro 57], to be applied by Grothendieck in the theory of sheaves over schemes
in the fifties and sixties. In Chapter XX, I have included whatever is necessary
of homologicai algebra for Hartshorne’s use in [Ha 77]. Both Chapters XX and
XXl give an appropriate background for the homological algebra used in Griffiths-
Harris [GrH 78], Chapter 5 (especially §3 and §4), and Gunning [Gu 90]. Chapter
XX carries out the general theory of derived functors. The exercises and Chapter
XXI may be viewed as providing examples and computations in specific concrete
instances of more specialized interest.

759
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The commutative algebra of Chapter X and the two chapters on homological
algebra in this fourth part also provide an appropriate background for certain
topics in algebraic geometry such as Serre’s study of intersection theory [Se 65],
Grothendieck duality, and Grothendieck’s Riemann-Roch theorem in algebraic
geometry. See for instance [SGA 6].

Finally I want to draw attention to the use of homological algebra in certain
areas of partial differential equations, as in the papers of Atiyah-Bott-Patodi and
Atiyah-Singer on complexes of elliptic operators. Readers can trace some of the
literature from the bibliography given in [ABP 73].

The choice of material in this part was to a large extent motivated by all the
above applications.

For this chapter, considering the number of references and cross-references
given, the bibliography for the entire chapter is placed at the end of the chapter.



CHAPTER XX

General Homology Theory

To alarge extent the present chapter is arrow-theoretic. There is a substantial
body of linear algebra which can be formalized very systematically, and con-
stitutes what Steenrod called abstract nonsense, but which provides a well-oiled
machinery applicable to many domains. References will be given along the way.

Most of what we shall do applies to abelian categories, which were mentioned
in Chapter III, end of §3. However, in first reading, I recommend that readers
disregard any allusions to general abelian categories and assume that we are
dealing with an abelian category of modules over a ring, or other specific abelian
categories such as complexes of modules over a ring.

§1. COMPLEXES

Let A be a ring. By an open complex of 4-modules, one means a sequence
of modules and homomorphisms {(E', d')},

o i1 L pi 4 gt
where i ranges over all integers and d; maps E' into E'*!, and such that
dod™ =0

for all i.
One frequently considers a finite sequence of homomorphisms, say

E'>... 5 E"

761
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such that the composite of two successive ones is 0, and one can make this
sequence into a complex by inserting 0 at each end:

20-505E' ... 5 E 500>

Such a complex is called a finite or bounded complex.

Remark. Complexes can be indexed with a descending sequence of integers,
namely,

—Ey S5 E S Eiy -
When that notation is used systematically, then one uses upper indices for
complexes which are indexed with an ascending sequence of integers:

L EiT! 4L A gt
In this book, I shall deal mostly with ascending indices.

As stated in the introduction of this chapter, instead of modules over a ring,
we could have taken objects in an arbitrary abelian category.

The homomorphisms d' are often called differentials, because some of the
first complexes which arose in practice were in analysis, with differential operators
and differential forms. Cf. the examples below.

We denote a complex as above by (E, d). If the complex is exact, it is often
useful to insert the kernels and cokernels of the differentials in a diagram as
follows, letting M; = Kerd' = Im d'~ .

NAYAYAE

VANWAWAN

Thus by definition, we obtain a family of short exact sequences
0-> M - E - M* 50

If the complex is not exact, then of course we have to insert both the image of
d'~ ! and the kernel of d'. The factor

(Ker d')/(Im d'~ 1)

will be studied in the next section. It is called the homology of the complex,
and measures the deviation from exactness.
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Let M be a module. By a resolution of M we mean an exact sequence
-E, —-E - -->E,»M-A0.

Thus a resolution is an exact complex whose furthest term on the right before
01is M. The resolution is indexed as shown. We usually write E,, for the part of
complex formed only of the E;s, thus:

EMiS: —’En_)En—l_’"'_)EO,

stopping at E,. We then write E for the complex obtained by sticking 0 on
the right:

Eis: - E, »E,_,—---->E;—>0.

If the objects E; of the resolution are taken in some family, then the resolution is
qualified in the same way as the family. For instance, if E; is free for all i > 0
then we say that the resolution is a free resolution. If E; is projective for all
i = 0 then we say that the resolution is projective. And so forth. The same
terminology is applied to the right, with a resolution

0-—>M—)E0-—>E1—+---—>E"_1—>E"—>,

also written
0 band M hand EM'

We then write E for the complex
0-E°>E' - E*—....

See §5 for injective resolutions.

A resolution is said to be finite if E; (or EY) = 0 for all but a finite number of
indices i.

Example. Every module admits a free resolution (on the left). This is a
simple application of the notion of free module. Indeed, let M be a module, and
let {x;} be a family of generators, with j in some indexing set J. For each j let
Re; be a free module over R with a basis consisting of one element e;. Let

jed
be their direct sum. There is a unique epimorphism

F->M->0

sending e; on x;, Now we let M, be the kernel, and again represent M, as the
quotient of a free module. Inductively, we can construct the desired free
resolution.
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Example. The Standard Complex. LetSbeaset. Fori =0,1, 2,...

let E; be the free module over Z generated by (i + 1)-tuples (x, ..., x;) with
Xgs - - -, X; € S. Thus such (i + 1)-tuples form a basis of E; over Z. There is a
unique homomorphism
div1: Eipy = E;

such that

i+1

dip (g« ooy Xiny) = 2}(—1)1(%,...,59,...,x,.+1),
=

where the symbol X; means that this term is to be omitted. For i = 0, we define
dy : Eg — Z to be the unique homomorphism such that dy(x,) = 1. The map d,
is sometimes called the augmentation, and is also denoted by &. Then we obtain
a resolution of Z by the complex

—E —>E—> - -—>ES35Z-0.

The formalism of the above maps d; is pervasive in mathematics. See Exercise
2 for the use of the standard complex in the cohomology theory of groups. For
still another example of this same formalism, compare with the Koszul complex
in Chapter XXI, §4.

Given a module M, one may form Hom(E;, M) for each i, in which case one
gets coboundary maps

8': Hom(E;, M) > Hom(Eyy, M), 8(f) = fo di*!,

obtained by composition of mappings. This procedure will be used to obtain
derived functors in §6. In Exercises 2 through 6, you will see how this procedure
is used to develop the cohomology theory of groups.

Instead of using homomorphisms, one may use a topological version with
simplices, and continuous maps, in which case the standard complex gives rise to
the singular homology theory of topological spaces. See [GreH 81], Chapter 9.

Examples. Finite free resolutions. In Chapter XXI, you will find other
examples of complexes, especially finite free, constructed in various ways with
different tools. This subsequent entire chapter may be viewed as providing
examples for the current chapter.

Examples with differential forms. In Chapter XIX, §3, we gave the exam-
ple of the de Rham complex in an algebraic setting. In the theory of differential
manifolds, the de Rham complex has differential maps

di: Qi > QiF1,

sending differential forms of degree i to those of degree i + 1, and allows for
the computation of the homology of the manifold.

A similar situation occurs in complex differential geometry, when the maps
d' are given by the Dolbeault d-operators

3i: QP — Pt
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operating on forms of type (p, i). Interested readers can look up for instance
Gunning’s book [Gu 90] mentioned in the introduction to Part IV,Volume I, E.
The associated homology of this complex is called the Dolbeault or d-cohom-
ology of the complex manifold.

Let us return to the general algebraic aspects of complexes and resolutions.

It is an interesting problem to discuss which modules admit finite resoutions,
and variations on this theme. Some conditions are discussed later in this chapter
and in Chapter XXI. If a resolution

O0-E, -E,_,—- - >2E;-M-0

is such that E, = 0 for m > n, then we say that the resolution has length < n
(sometimes we say it has length n by abuse of language).

A closed complex of A-modules is a sequence of modules and homomorph-
isms {(E', d’)} where i ranges over the set of integers mod n for some n = 2
and otherwise satisfying the same properties as above. Thus a closed complex
looks like this:

EI—>E2—>""—>E"
\_—/
We call n the length of the closed complex.

Without fear of confusion, one can omit the index i on d' and write just d.
We also write (E, d) for the complex {(E', d')}, or even more briefly, we write
simply E.

Let (E, d) and (E’, d') be complexes (both open or both closed). Let r be an
integer. A morphism or homomorphism (of complexes)

JSH(E,d)—(E, d)
of degree r is a sequence
f;' : E/i — Ei+r

of homomorphisms such that for all i the following diagram is commutative:

E,(i_1) Sfi-1 Ei-1+r
d'l ld
Eri ——y Ei+r

Si

Just as we write d instead of d', we shall also write f instead of f;. If the com-
plexes are closed, we define a morphism from one into the other only if they
have the same length.

It is clear that complexes form a category. In fact they form an abelian
category. Indeed, say we deal with complexes indexed by Z for simplicity, and
morphisms of degree 0. Say we have a morphism of complexes f:C — C” or



766 GENERAL HOMOLOGY THEORY XX, §1

putting the indices:

—C,—C

|

CI/ ”
n 7 Yn~1

n—1

We let C, = Ker(C, — C;). Then the family (C;) forms a complex, which we
define to be the kernel of f. We let the reader check the details that this and a
similar definition for cokernel and finite direct sums make complexes of
modules into an abelian category. At this point, readers should refer to Chapter
III, §9, where kernels and cokernels are discussed in this context. The snake
lemma of that chapter will now become central to the next section.

It will be useful to have another notion to deal with objects indexed by a
monoid. Let G be a monoid, which we assume commutative and additive to
fit the applications we have in mind here. Let {M};.; be a family of modules
indexed by G. The direct sum

M=@ M,

ieG

will be called the G-graded module associated with the family {M}, ;. Let
{M;};.c and {M;};.; be families indexed by G, and let M, M’ be their asso-
ciated G-graded modules. Let r € G. By a G-graded morphism f : M’ — M of
degree r we shall mean a homomorphism such that f maps M; into M;,, for
each i € G (identifying M; with the corresponding submodule of the direct
sum on the i-th component). Thus f is nothing else than a family of homo-
morphisms f; : M; - M,.,.

If (E, d) is a complex we may view E as a G-graded module (taking the direct
sum of the components of the complex), and we may view d as a G-graded
morphism of degree 1, letting G be Z or Z/nZ. The most common case we en-
counter is when G = Z. Then we write the complex as

E=@®E; and d:E-E

maps E into itself. The differential d is defined as d; on each direct summand
E;, and has degree 1.

Conversely, if G is Z or Z/nZ, one may view a G-graded module as a com-
plex, by defining d to be the zero map.

For simplicity, we shall often omit the prefix “ G-graded ” in front of the word
“morphism”, when dealing with G-graded morphisms.
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§2. HOMOLOGY SEQUENCE

Let (E, d) be a complex. We let
ZY(E) = Ker &'
and call Z/(E) the module of i-cycles. We let
BY(E) = Imd'~!

and call BY(E) the module of i-boundaries. We frequently write Z* and B
instead of Z'(E) and B'(E), respectively. We let

HYE) = Z//B' = Ker d'/Imd' !,

and call H'(E) the i-th homology group of the complex. The graded module
associated with the family {H'} will be denoted by H(E), and will be called the
homology of E. One sometimes writes H*(E) instead of H(E).

If f:E' — E is a morphism of complexes, say of degree 0, then we get an
induced canonical homomorphism

H(f) : H(E') = H'(E)

on each homology group. Indeed, from the commutative diagram defining a
morphism of complexes, one sees at once that f maps Z/(E') into Z/(E) and B(E’)
into BY(E), whence the induced homomorphism H( f). Compare with the begin-
ning remarks of Chapter III, §9. One often writes this induced homomorphism
as f;4 rather than H;(f), and if H(E) denotes the graded module of homology as
above, then we write

H(f) = fx : HE') — H(E).

We call H(f) the map induced by f on homology. If H'(f) is an isomorphism
for all i, then we say that f is a homology isomorphism.

Note that if f: E' — E and g: E — E” are morphisms of complexes, then it
is immediately verified that

H(g)°H(f) =H(g°f) and  H(Gd) = id.

Thus H is a functor from the category of complexes to the category of graded
modules.

We shall consider short exact sequences of complexes with morphisms of
degree 0:

0-ELESE -0,
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which written out in full look like this:

0 Er(i-l) Yéi~1 :E!/(i— 1)—_,0
4 J

0——E —oEF —fopi ——0

0 E+D i) yEit1 9 L, privh

0 ,E/(i+2) ’Ei+2 lE'/(i+2) ,0

N

One can define a morphism

d0:H(E") - H(E")
of degree 1, in other words, a family of homomorphisms
51' . H/li N Hl(i+l)

by the snake lemma.

Theorem 2.1. Let
0-ELESE -0
be an exact sequence of complexes with f, g of degree 0. Then the sequence
H(E') —"— H(E)
X %
H(EH)
is exact.

This theorem is merely a special application of the snake lemma.

If one writes out in full the homology sequence in the theorem, then it looks
like this:

_5>H/i__’Hi_}Hﬂi_‘s’Hl(i+l)_)Hi+l _’Hrr(i+1)_‘7)
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It is clear that our map § is functorial (in an obvious sense), and hence that
our whole structure (H, d) is a functor from the category of short exact sequences
of complexes into the category of complexes.

§3. EULER CHARACTERISTIC AND THE
GROTHENDIECK GROUP

This section may be viewed as a continuation of Chapter III, §8, on Euler-
Poincaré maps. Consider complexes of A-modules, for simplicity.

Let E be a complex such that almost all homology groups H’ are equal to 0.
Assume that E is an open complex. As in Chapter III, §8, let ¢ be an Euler-
Poincaré mapping on the category of modules (i.e. A-modules). We define the
Euler-Poincaré characteristic x,,(E) (or more briefly the Euler characteristic)
with respect to ¢, to be

1(E) = 3 (= 1o(H)

provided @(H") is defined for all H', in which case we say that y,, is defined for the
complex E.

If E is a closed complex, we select a definite order (E!, . .., E") for the integers
mod n and define the Euler characteristic by the formula

1o(E) = _Zl( —o(H)

provided again all p(H') are defined.

For an example, the reader may refer to Exercise 28 of Chapter 1.

One may view H as a complex, defining d to be the zero map. In that case,
we see that y (H) is the alternating sum given above. More generally:

Theorem 3.1. Let F be a complex, which is of even length if it is closed.
Assume that o(F") is defined for all i, o(F') = 0 for almost all i, and H(F) = 0
for almost alli. Then y,(F) is defined, and

1o(F) = 3. (= 1Yo(FY).
Proof. Let Z' and B' be the groups of i-cycles and i-boundaries in F'
respectively. We have an exact sequence
0-Z - F - Bt 0.
Hence x,(F) is defined, and

@(F) = o(Z') + @(B™ ).
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Taking the alternating sum, our conclusion follows at once.

A complex whose homology is trivial is called acyclic.

Corollary 3.2. Let F be an acyclic complex, such that o(F') is defined for
all i, and equal to O for almost all i. If F is closed, we assume that F has even
length. Then

Xo(F) = 0.

In many applications, an open complex F is such that F' = 0 for almost
all i, and one can then treat this complex as a closed complex by defining an
additional map going from a zero on the far right to a zero on the far left. Thus
in this case, the study of such an open complex is reduced to the study of a
closed complex.

Theorem 3.3. Let
0-E—-E-E -0

be an exact sequence of complexes, with morphisms of degree 0. If the com-
plexes are closed, assume that their length is even. Let @ be an Euler-Poincaré
mapping on the category of modules. If y, is defined for two of the above
three complexes, then it is defined for the third, and we have

Xo(E) = 2(E') + 1o(E").
Proof. We have an exact homology sequence
N Hu(i—l) N H/i N Hi = Hlli = H/(i+l) N

This homology sequence is nothing but a complex whose homology is trivial.
Furthermore, each homology group belonging say to E is between homology
groups of E" and E”. Hence if y, is defined for E’ and E” it is defined for E.
Similarly for the other two possibilities. If our complexes are closed of even
length n, then this homology sequence has even length 3n. We can therefore
apply the corollary of Theorem 3.1 to get what we want.

For certain applications, it is convenient to construct a universal Euler
mapping. Let @ be the set of isomorphism classes of certain modules. If E is a
module, let [E] denote its isomorphism class. We require that @ satisfy the
Euler-Poincaré condition, i.e. if we have an exact sequence

O-E->E->E -0,

then [E] is in @ if and only if [E'} and [E"] are in @. Furthermore, the zero
module is in Q.
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Theorem 3.4. Assume that Q satisfies the Euler-Poincaré condition. Then
there is a map

7@ - K(Q)

of @ into an abelian group K(Q) having the universal property with respect to
Euler-Poincaré maps defined on Q.

To construct this, let F,,(@) be the free abelian group generated by the set of
such [E]. Let B be the subgroup generated by all elements of type

LE] - [E] - [E],

where
O-E->E-E >0

is an exact sequence whose members are in @. We let K(®) be the factor group
F(®@)/B, and let y: @ - K(®) be the natural map. It is clear that y has the
universal property.

We observe the similarity of construction with the Grothendieck group of a
monoid. In fact, the present group is known as the Euler-Grothendieck group
of @, with Euler usually left out.

The reader should observe that the above arguments are valid in abelian
categories, although we still used the word module. Just as with the elementary
isomorphism theorems for groups, we have the analogue of the Jordan-Holder
theorem for modules. Of course in the case of modules, we don’t have to worry
about the normality of submodules.

We now go a little deeper into K-theory. Let @ be an abelian category. In
first reading, one may wish to limit attention to an abelian category of modules
over aring. Let C be a family of objects in @. We shall say that C is a K-family
if it satisfies the following conditions.

K 1. Cisclosed under taking finite direct sums, and 0 is in C.
K 2. Given an object E in @ there exists an epimorphism

L->E-O

with L in C.
K 3. Let E be an object admitting a finite resolution of length n

0-L,»> > Ly,»>E-0
with L;e C for all i. If
0O-N->F,_,->->F,>E->0

is a resolution with N in @ and F, ..., F,_, in C, then N isalsoin C.
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We note that it follows from these axioms that if F is in € and F' is iso-
morphic to F, then F' is also in C, as one sees by looking at the resolution

0 F ->F->0-0

and applying K 3. Furthermore, given an exact sequence
0-F->F->F -0

with F and F” in @€, then F' is in €, again by applying K 3.

Example. One may take for @ the category of modules over a commutative
ring, and for € the family of projective modules. Later we shall also consider
Noetherian rings, in which case one may take finite modules, and finite pro-
jective modules instead. Condition K 2 will be discussed in §8.

From now on we assume that C is a K-family. For each object E in @, we
let [E] denote its isomorphism class. An object E of @ will be said to have
finite C-dimension if it admits a finite resolution with elements of €. We let
@(C) be the family of objects in @ which are of finite C-dimension. We may
then form the

K(@(C)) = Z[G(C)])/R(a(C))

where R(Q(C)) is the group generated by all elements [E] — [E] — [E"]
arising from an exact sequence

0O-F—->E->E -0
in @(€). Similarly we define
K(€) = Z[(C)]/R(C),

where R(Q) is the group of relations generated as above, but taking E', E, E”
in C itself.
There are natural maps

Yare): A(€) - K(A(C)) and  y.:C - K(C),

which to each object associate its class in the corresponding Grothendieck
group. There is also a natural homomorphism

e: K(C) - K(G(®))

since an exact sequence of objects of C can also be viewed as an exact sequence
of objects of @(C).
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Theorem 3.5. Let M € Q(C) and suppose we have two resolutions
Ly->M-0 and Ly->M->0,
by finite complexes Ly, and L), in C. Then
Y (= Diye(Ly) = Y (= Diye(L).

Proof. Take first the special case when there is an epimorphism Lj; = Ly,
with kernel E illustrated on the following commutative and exact diagram.

0——E—— L), ——L,——0

The kernel is a complex

0-E,»E,_,-> - ->E;—»0
which is exact because we have the homology sequence
H,(E) » H(L') > H,(L) — H,_(E)

For p > 1 we have H,(L) = H,(L") = 0 by definition, so H,(E) = Oforp 2 1.
And for p = 0 we consider the exact sequence

H (L) » Ho(E) = Ho(L") = Ho(L)

Now we have H,(L) =0, and Hy(L) -» Hy(L) corresponds to the identity
morphisms on M so is an isomorphism. It follows that Hy(E) = 0 also.

By definition of K-family, the objects E, are in €. Then taking the Euler
characteristic in K(C) we find

WL — (L) = (E) =0

which proves our assertion in the special case.

The general case follows by showing that given two resolutions of M in €
we can always find a third one which tops both of them. The pattern of our
construction will be given by a lemma.
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Lemma 3.6. Given two epimorphisms u:M — N and v:M' -> N in Q,
there exist epimorphisms F — M and F — M’ with F in C making the following

diagram commutative.

Proof. Let E = M xy M/, that is E is the kernel of the morphism
MxM >N

given by (x, y) > ux — vy. (Elements are not really used here, and we could
write formally u — v instead.) There is some F in € and an epimorphism
F — E — 0. The composition of this epimorphism with the naturai projections
of E on each factor gives us what we want.

We construct a complex L}, giving a resolution of M with a commutative
and exact diagram:

0
Ly M >0
1
id
Ly M 0
id
V
L), >M 0
0
The construction is done inductively, so we put indices
L; L, -
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Suppose that we have constructed up to L;_, with the desired epimorphisms on
L,_, and L;_,. We want to construct L;. Let B, = Ker(L;,_; - L;_,) and
similarly for B; and B;. We obtain the commutative diagram:

Li——B,—L,_,—L;,

’ >4 ’ ’
L; B; i1 Li

1

If Bf — B; or B! — B} are not epimorphisms, then we replace L;_, by
Li-,®L L.

We let the boundary map to L}_, be 0 on the new summands, and similarly

define the maps to L;_, and L;_, to be 0 on L; and L,_, respectively.
Without loss of generality we may now assume that

B! - B; and B! - B;

i

are epimorphisms. We then use the construction of the preceding lemma.
We let

Ei = Li @B: B;l and E; = Bx” @B; L;
Then both E; and E; have natural epimorphisms on B;. Then we let
N; = E; @B,’-' E;

and we find an object L} in C with an epimorphism L — N;. This gives us the
inductive construction of L” up to the very end. To stop the process, we use
K 3 and take the kernel of the last constructed L} to conclude the proof.

Theorem 3.7. The natural map
e: K(C) - K(G(@))
is an isomorphism.
Proof. The map is surjective because given a resolution
0-F,» -->F;,->M->0

with F; € € for all i, the element

Z (- l)i}'e (Fz)
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maps on y, (M) under . Conversely, Theorem 3.5 shows that the association
M=) (= 1)ye(F)

is a well-defined mapping. Since for any L € € we have a short exact sequence
0> L - L - 0, it follows that this mapping following ¢ is the identity on K(C),
s0 ¢ is a monomorphism. Hence ¢ is an isomorphism, as was to be shown.

It may be helpful to the reader actually to see the next lemma which makes
the additivity of the inverse more explicit.

Lemma 3.8. Given an exact sequence in @(C)
0O-M->M-M >0

there exists a commutative and exact diagram

0—— L, » Ly Ly 0
0 > M M S M 50
3 l jv
0 0 0

with finite resolutions Ly, Ly, Ly in C.

Proof. We first show that we can find L', L, L” in € to fit an exact and
commutative diagram

0—— L — L ~ L 0
3 3 q

0 — M’ > M M" 0
l d
0 0 0

We first select an epimorphism L” - M” with L” in C. By Lemma 3.6 there
exists L, € @ and epimorphisms L, - M, L, - L"” making the diagram com-
mutative. Then let L, — M’ be an epimorphism with L, € C, and finally define
L=L,®L,. Then we get morphisms L - M and L — L” in the obvious
way. Let L' be the kernel of L —» L". Then L, < L' so we get an epimorphism
L'-> M.
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This now allows us to construct resolutions inductively until we hit the
n-th step, where n is some integer such that M, M” admit resolutions of length
nin C. The last horizontal exact sequence that we obtain is

O0-L,-L,-L,—-0

and L, can be chosen to be the kernel of L, _, — L_,. By K3 we know that
L, lies in C, and the sequence

0-L,-L,,
is exact. This implies that in the next inductive step, we can take L), = 0.
Then
0-L,,y»L,;;>0-0
is exact, and at the next step we just take the kernels of the vertical arrows to

complete the desired finite resolutions in €. This concludes the proof of the
lemma.

Remark. The argument in the proof of Lemma 3.8 in fact shows:
If
0O-M->M-M -0
is an exact sequence in @, and if M, M" have finite C-dimension, then so does
M.
In the category of modules, one has a more precise statement:

Theorem 3.9. Let @ be the category of modules over a ring. Let ® be the
family of projective modules. Given an exact sequence of modules

0-E->E—-E -0
if any two of E', E, E" admit finite resolutions in ® then the third does also.

Proofs in a more subtle case will be given in Chapter XXI, Theorem 2.7.

Next we shall use the tensor product to investigate a ring structure on the
Grothendieck group. We suppose for simplicity that we deal with an abelian
category of modules over a commutative ring, denoted by @, together with a K-
family C as above, but we now assume that @ is closed under the tensor product.
The only properties we shall actually use for the next results are the following
ones, denoted by TG (for “tensor” and “Grothendieck” respectively):

TG 1. There is a bifunctorial isomorphism giving commutativity
MO@NaN®M

for all M, N in @; and similarly for distributivity over direct sums,
and associativity.
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TG 2. Forall L in C the functor M — L ® M is exact.
TG3. IfL,L arein Cthen L ® L' isin C.
Then we may give K(C) the structure of an algebra by defining
cle(L) cle(L) = cle(L ® L').

Condition TG 1 implies that this algebra is commutative, and we call it the
Grothendieck algebra. In practice, there is a unit element, but if we want one in
the present axiomatization, we have to make it an explicit assumption:

TG 4. There is an object R in € such that R® M ~ M for all M in Q.

Then cl.(R) is the unit element.
Similarly, condition TG 2 shows that we can define a module structure on
K(Q@) over K(C) by the same formula

cle(L) cl,(M) = cl (L ® M),

and similarly K(@(@)) is a module over K(C), where we recall that @(C) is the
family of objects in @ which admit finite resolutions by objects in C.

Since we know from Theorem 3.7 that K(C) =~ K(Q(R)), we also have a
ring structure on K(®(Q)) via this isomorphism. We then can make the product
more explicit as follows.

Proposition 3.10. Let M e @Q(C)and let Ne @. Let
0-L,»-->Ly->M->0

be a finite resolution of M by objects in C. Then

cle(M) clo(N) = Y. (= 1) clo(L; ® N).

= (= 1) clo(H(K))
where K is the complex
0-L, N> - 5L, N->-MRN-0

and H{K) is the i-th homology of this complex.

Proof. The formulas are immediate consequences of the definitions, and of
Theorem 3.1.

Example. Let @ be the abelian category of modules over a commutative
ring. Let € be the family of projective modules. From §6 on derived functors
the reader will know that the homology of the complex K in Proposition 3.10
is just Tor(M, N). Therefore the formula in that proposition can also be written

cle(M) cly(N) = Y (= 1) clg(Tor(M, N)).
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Example. Let k be a field. Let G be a group. By a (G, k)-module, we shall
mean a pair (E, p), consisting of a k-space E and a homomorphism

p:G > Aut(E).

Such a homomorphism is also called a representation of G in E. By abuse of
language, we also say that the k-space E is a G-module. The group G operates
on E, and we write ox instead of p(c)x. The field k will be kept fixed in what
follows.

Let Mod,(G) denote the category whose objects are (G, k)-modules. A mor-
phism in Mod,(G) is what we call a G-homomorphism, that is a k-linear map
f+ E — F such that f(ox) = of(x) for all ¢ € G. The group of morphisms in
Mod,(G) is denoted by Homg;.

If E is a G-module, and ¢ € G, then we have by definition a k-automorphism
o:E — E. Since T" is a functor, we have an induced automorphism

T'(6): T'(E) —» T"(E)

for each r, and thus T'(E) is also a G-module. Taking the direct sum, we see
that T(E) is a G-module, and hence that T is a functor from the category of
G-modules to the category of graded G-modules. Similarly for /\", §, and /\, §.

It is clear that the kernel of a G-homomorphism is a G-submodule, and that
the factor module of a G-module by a G-submodule is again a G-module so the
category of G-modules is an abelian category.

We can now apply the general considerations on the Grothendieck group
which we write

K(G) = K(Modi(G))
for simplicity in the present case. We have the canonical map
cl: Mod (G) — K(G).

which to each G-module associates its class in K(G).

If E, F are G-modules, then their tensor product over k, E® F, is also a
G-module. Here again, the operation of G on E ® F is given functorially. If
o € G, there exists a unique k-linear map E ® F — E ® F such that for x € E,
yeF we have x ® y+ (0x) ® (oy). The tensor product induces a law of
composition on Mod,(G) because the tensor products of G-isomorphic modules
are G-isomorphic.

Furthermore all the conditions TG 1 through TG 4 are satisfied. Sincekisa
field, we find also that tensoring an exact sequence of G-modules over k with any
G-module over k preserves the exactness, so TG 2 is satisfied for all (G, k)-
modules. Thus the Grothendieck group K(G) is in fact the Grothendieck ring,
or the Grothendieck algebra over k.
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By Proposition 2.1 and Theorem 2.3 of Chapter XVIII, we also see:

The Grothendieck ring of a finite group G consisting of isomorphism classes of
finite dimensional (G, k)-spaces over a field k of characteristic 0 is naturally
isomorphic to the character ring X4(G).

We can axiomatize this a little more. We consider an abelian category of
modules over a commutative ring R, which we denote by @ for simplicity. For
two modules M, N in @ we let Mor(M, N) as usual be the morphisms in @, but
Mor(M, N)is an abelian subgroup of Homg(M, N). For example, we could take
@ to be the category of (G, k)-modules as in the example we have just discussed,
in which case Mor(M, N) = Homg(M, N).

We let € be the family of finite free modules in @ We assume that C satisfies
TG 1, TG 2, TG 3, TG 4, and also that C is closed under taking alternating pro-
ducts, tensor products and symmetric products. We let K = K(C). As we have
seen, K is itself a commutative ring. We abbreviate cl, = cl.

We shall define non-linear maps
A:K-K
using the alternating product. If E is finite free, we let
A(E) = cl(/\'E).

Proposition 1.1 of Chapter XIX can now be formulated for the K-ring as follows.

Proposition 3.11. Let
O-E->E->E -0

be an exact sequence of finite free modules in @. Then for every integer n = 0
we have

AE) = Y A(ENA"U(E").
i=0
As a result of the proposition, we can define a map

A K= 1+ tK[[t1]

of K into the multiplicative group of formal power series with coefficients in K,
and with constant term 1, by letting

Ax) = ‘ii"(x)t"‘
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Proposition 1.4 of Chapter XIX can be formulated by saying that:
The map
A K- 1+ tK[[t]]
is a homomorphism.

We note that if L is free of rank 1, then
A°%(L) = ground ring;
ANL) = cl(L);
A(L)y=0 for i>1.
This can be summarized by writing
A(L) =1+ cl(L).

Next we can do a similar construction with the symmetric product instead of
the alternating product. If E is a finite free module in € we let as usual:

S(E) = symmetric algebra of E;

S'(E) = homogeneous component of degree i in S(E).

We define
d'(E) = cl(S(E))

and the corresponding power series
o(E) =) o'(E)'.
Theorem 3.12. Let E be a finite free module in Q, of rank r. Then for all
integers n = 1 we have

Y (= 1)YA(E)s" {E) = 0,
i=0

where by definition 6/(E) = 0 for j < 0. Furthermore
o(E)A_(E) = 1,
so the power series o(E) and A_ (E) are inverse to each other.

Proof. The first formula depends on the analogue for the symmetric product
and the alternating product of the formula given in Proposition 1.1 of Chapter
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XIX. It could be proved directly now, but the reader will find a proof as a special
case of the theory of Koszul complexes in Chapter XXI, Corollary 4.14. The
power series relation is essentially a reformulation of the first formula.

From the above formalism, it is possible to define other maps besides A’ and
g’

Example. Assume that the group G is trivial, and just write K for the
Grothendieck ring instead of K(1). For x € K define

Y_(x) = —tg;log A(x) = =1 A (x)/A(x).

Show that ¢_, is an additive and multiplicative homomorphism. Show that
Y(E) = 1 + cl(E)t + cl(E)*t> + -+ - .

This kind of construction with the logarithmic derivative leads to the Adams
operations ¢ in topology and algebraic geometry. See Exercise 22 of Chapter
XVIIL.

Remark. If it happens in Theorem 3.12 that £ admits a decomposition into
1-dimensional free modules in the K-group, then the proof trivializes by using
the fact that A(L) = 1+ cl(L)t if L is 1-dimensional. But in the example of
(G, k)-spaces when k is a field, this is in general not possible, and it is also not
possible in other examples arising naturally in topology and algebraic geometry.
However, by “changing the base,” one can sometimes achieve this simpler
situation, but Theorem 3.12 is then used in establishing the basic properties. Cf.
Grothendieck [SGA 6], mentioned in the introduction to Part IV, and other works
mentioned in the bibliography at the end, namely [Ma 69], [At 61], [At 67],
[Ba 68], [Bo 62]. The lectures by Atiyah and Bott emphasize the topological
aspects as distinguished from the algebraic-geometric aspects. Grothendieck
[Gr 68] actually shows how the formalism of Chern classes from algebraic
geometry and topology also enters the theory of representations of linear groups.
See also the =xposition in [FuL 85], especially the formalism of Chapter I, §6.
For special emphasis on applications to representation theory, see Brocker-tom
Dieck [BtD 85], especially Chapter II, §7, concerning compact Lie groups.

§4. INJECTIVE MODULES

In Chapter III, §4, we defined projective modules, which have a natural
relation to free modules. By reversing the arrows, we can define a module Q to
be injective if it satisfies any one of the following conditions which are equivalent:

I1. Given any module M and a submodule M’, and a homomorphism
J:M' — Q, there exists an extension of this homomorphism to M,
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that is there exists 1 : M — Q making the following diagram commuta-

tive:
0 - M > M
|
Q

I12. The functor M — Hom (M, Q) is exact.
13. Every exact sequence 0 —» Q - M — M"” — 0 splits.

We prove the equivalence. General considerations on homomorphisms as in
Proposition 2.1, show that exactness of the homed sequence may fail only at
one point, namely given

O-M->M->M -0,

the question is whether
HomA(M’ Q) - HomA(M,a Q) -0

is exact. But this is precisely the hypothesis as formulated in I1, so 11 implies
I2is essentially a matter of linguistic reformulation, and in fact I 1 is equivalent
toI2.

Assume I2 or I 1, which we know are equivalent. To get I 3 is immediate, by
applying 11 to the diagram:

0——Q—M

17

Q

To prove the converse, we need the notion of push-out (cf. Exercise 52 of
Chapter I). Given an exact diagram
> M’
Q

M—M

||

Q N=0Q&y M.

0

> M

we form the push-out:
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Since M’ — M is a monomorphism, it is immediately verified from the construc-
tion of the push-out that Q — N is also a monomorphism. By I3, the sequence

0-Q->N

splits, and we can now compose the splitting map N — Q with the push-out map
M — N to get the desired h: M — Q, thus proving 11,

We saw easily that every module is a homomorphic image of a free module.
There is no equally direct construction for the dual fact:

Theorem 4.1. Every module is a submodule of an injective module.

The proof will be given by dualizing the situation, with some lemmas. We
first look at the situation in the category of abelian groups. If M is an abelian
group, let its dual group be M* = Hom(M, Q/Z). If F is a free abelian group,
it is reasonable to expect, and in fact it is easily proved that its dual F” is an
injective module, since injectivity is the dual notion of projectivity. Furthermore,
M has a natural map into the double dual M**, which is shown to be a mono-
morphism. Now represent M" as a quotient of a free abelian group,

F—> M*— 0.

Dualizing this sequence yields a monomorphism
0—> MM — F?,

and since M is embedded naturally as a subgroup of M ", we get the desired
embedding of M as a subgroup of F".

This proof also works in general, but there are details to be filled in. First
we have to prove that the dual of a free module is injective, and second we have
to be careful when passing from the category of abelian groups to the category
of modules over an arbitrary ring. We now carry out the details.

We say that an abelian group T is divisible if for every integer m, the homo-
morphism

my: X — mx

is surjective.

Lemma 4.2. [If T is divisible, then T is injective in the category of abelian
groups.

Proof. Let M’ M be a subgroup of an abelian group, and let f:M' —» T
be a homomorphism. Let xe M. We want first to extend f to the module
(M’, x) generated by M’ and x. If x is free over M’, then we select any value
t € T.and it is immediately verified that fextends to (M’, x) by giving the value
f(x) = t. Suppose that x is torsion with respect to M’, that is there is a
positive integer m such that mx e M’. Let d be the period of x mod M’, so
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dx € M', and d is the least positive integer such that dx € M. By hypothesis,
there exists an element u € T such that du = f(dx). For any integer n,and ze M’
define

f(z + nx) = f(z) + nu.

By the definition of d, and the fact that Z is principal, one sees that this value
for fis independent of the representation of an element of (M’, x) in the form
- + nx, and then it follows at once that this extended definition of f is a
homomorphism. Thus we have extended f to (M', x).

The rest of the proof is merely an application of Zorn’s lemma. We consider
pairs (N, g) consisting of submodules of M containing M’, and an extension g
of fto N. We say that (N, g) < (N,,g,) if N = N, and the restriction of g,
to N is g. Then such pairs are inductively ordered. Let (N, g) be a maximal
element. If N # M then there is some x e M, x ¢ N and we can apply the first
part of the proof to extend the homomorphism to (N, x), which contradicts
the maximality, and concludes the proof of the lemma.

Example. The abelian groups Q/Z and R/Z are divisible, and hence are
injective in the category of abelian groups.

We can prove Theorem 4.1 in the category of abelian groups following the
pattern described above. If F is a free abelian group, then the dual F" is a direct
product of groups isomorphic to Q/Z, and is therefore injective in the category
of abelian groups by Lemma 4.2. This concludes the proof.

Next we must make the necessary remarks to extend the system to modules.
Let A be a ring and let T be an abelian group. We make Homg(A4, T) into an
A-module as follows. Let f:4 — T be an abelian group homomorphism. For
ae A we define the operation

(af Xb) = f(ba).

The rules for an operation are then immediately verified. Then for any 4-module
X we have a natural isomorphism of abelian groups:

Hom,(X, T) = Hom,(X, Homy(A, T)).

Indeed, let ¥ : X — T be a Z-homomorphism. We associate with i the homo-
morphism

f:X - Homgz(A4, T)

such that

f)a) = Y(ax).
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The definition of the 4-module structure on Hom,(A4, T) shows that f is an
A-homomorphism, so we get an arrow from Homg(X, T) to

Hom (X, Homg,(4, T)).

Conversely, let f: X - Hom(A4, T) be an A-homomorphism. We define the
corresponding i by

Y(x) = f(x)(D).

It is then immediately verified that these maps are inverse to each other.

We shall apply this when T is any divisible group, although we think of T
as being Q/Z, and we think of the homomorphisms into T as representing the
dual group according to the pattern described previously.

Lemma 4.3. If Tis a divisible abelian group, then Hom,(A, T) is injective in
the category of A-modules.

Proof. 1t suffices to prove that if 0 - X — Y is exact in the category of
A-modules, then the dual sequence obtained by taking 4-homomorphisms into
Hom,(A, T) is exact, that is the top map in the following diagram is surjective.

Hom ,(Y, Homyz(A4, T)) —— Hom (X, Homgz(4, T)) —~—0

~ x

Homg,(Y, T) — Homg,(X, T) —0

But we have the isomorphisms described before the lemma, given by the vertical
arrows of the diagram, which is commutative. The bottom map is surjective
because T is an injective module in the category of abelian groups. Therefore
the top map is surjective, thus proving the lemma.

Now we prove Theorem 4.1 for A-modules. Let M be an A-module. We can
embed M in a divisible abelian group 7,

0-M —f> T.
Then we get an A-homomorphism
M — Homg(A4, T)

by x+ f,, where f(a) = f(ax). One verifies at once that x> f, gives an em-
bedding of M in Homg(A, T), which is an injective module by Lemma 4.3. This
concludes the proof of Theorem 4.1.
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§6. HOMOTOPIES OF MORPHISMS OF
COMPLEXES

The purpose of this section is to describe a condition under which homo-
morphisms of complexes induce the same map on the homology and to show
that this condition is satisfied in an important case, from which we derive
applications in the next section.

The arguments are applicable to any abelian category. The reader may pre-
fer to think of modules, but we use a language which applies to both, and is no
more complicated than if we insisted on dealing only with modules.

Let E = {(E",d")} and E' = {(E", d"™)} be two complexes. Let

fg:E-FE

be two morphisms of complexes (of degree 0). We say that f is homotopic to g
if there exists a sequence of homomorphisms

h,:E" - E'®" D
such that

f;l —dn = d’(nvl)hn + hn+1dn‘

Lemma S5.1. If f, g are homotopic, then f, g induce the same homomorphism
on the homology H(E), that is

H(f,) = H(g,): H'(E) - HY(E").

Proof. The lemma is immediate, because f, — ¢, vanishes on the cycles,
which are the kernel of d", and the homotopy condition shows that the image of
fu = gn is contained in the boundaries, that is, in the image of d'"~ V).

Remark. The terminology of homotopy is used because the notion and
formalism first arose in the context of topology. Cf. [ES 52] and [GreH 81].

We apply Lemma 5.1 to injective objects. Note that as usual the definition
of an injective module applies without change to define an injective object in
any abelian category. Instead of a submodule in I 1, we use a subobject, or
equivalently a monomorphism. The proofs of the equivalence of the three con-
ditions defining an injective module depended only on arrow-theoretic juggling,
and apply in the general case of abelian categories.

We say that an abelian category has enough injectives if given any object M
there exists a monomorphism

O0-M-1
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into an injective object. We proved in §4 that the category of modules over a
ring has enough injectives. We now assume that the abelian category we work
with has enough injectives.

By an injective resolution of an object M one means an exact sequence

0-M->I°>T1'> 17 >
such that each I, (n = 0) is injective. Given M, such a resolution exists. Indeed,
the monomorphism
0->M-1I°

exists by hypothesis. Let M? be its image. Again by assumption, there exists a
monomorphism

0-IM° > 11,

and the corresponding homomorphism I°® — I' has kernel M°. So we have
constructed the first step of the resolution, and the next steps proceed in the
same fashion.

An injective resolution is of course not unique, but it has some uniqueness
which we now formulate.

Lemma 5.2. Consider two complexes:

0 > M E° > E! > E? >

@

0 M > J0 I - J?

Suppose that the top row is exact, and that each I" (n 2 0) is injective. Let
@:M — M’ be a given homomorphism. Then there exists a morphism f of
complexes such that f_, = ¢; and any two such are homotopic.

Proof. By definition of an injective, the homomorphism M — I° via M’
extends to a homomorphism

fO : EO i IO’
which makes the first square commute:
M —E,

M ——°
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Next we must construct f;. We write the second square in the form

0 > EO/M » E!
Jo

IO“—’II

with the exact top row as shown. Again because I' is injective, we can apply the
same argument and find f; to make the second square commute. And so on,
thus constructing the morphism of complexes f.
Suppose f, g are two such morphisms. We define 4, : E° > M’ to be 0.
Then the condition for a homotopy is satisfied in the first instance, when
f-i=4g-1=0.

Next let d~!: M — E° be the embedding of M in E°. Since I° is injective,
we can extend

d°: E/Imd ' > E,

to a homomorphism h, : E! — I°. Then the homotopy condition is verified for
Jfo — go- Since hy = 0 we actually have in this case

fo—90 = h1d0,

but this simplification is misleading for the inductive step which follows. We
assume constructed the map h,, ,, and we wish to show the existence of h, ,
satisfying

fov1 = Gne1=d iy + hn+2d"+1'

Since Im d" = Ker d"*!, we have a monomorphism E"*!/Im d" — E"*2. By
the definition of an injective object, which in this case is I"* 1, it suffices to prove
that

fat1 — Gn+1 —d"h, ., vanishes on the image of d",
and to use the exact diagram:
0 —— E"*YIm d" ——— E"*2
Sns1=gn+1
I"+ 1

to get the existence of h,,,:E""? —» I"*! extending f,,, — g,+;. But we
have:
(Jos1 = Gn+1 — A"y A"

= (far1— Gnr A" — d"hy 11 d"
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=(fos1 — Gus)d" — d"(f, — g, — A" Vh,) by induction

= (for1 = Gue A" — d"(fo — 9) because d'd’ = 0

=0 because f, g are
homomorphisms of
complexes.

This concludes the proof of Lemma 5.2.

Remark. Dually, let P,,, » M’ — 0 be a complex with P' projective for
i = 0,andlet E,;, > M — Obearesolution. Let 9: M’ - M bea homomorphism.
Then ¢ extends to a homomorphism of complex P — E. The proof is obtained
by reversing arrows in Lemma 5.2. The books on homological algebra that I
know of in fact carry out the projective case, and leave the injective case to the
reader. However, one of my motivations is to do here what is needed, for
instance in [Ha 77], Chapter III, on derived functors, as a preliminary to the
cohomology of sheaves. For an example of projective resolutions using free
modules, see Exercises 2—7, concerning the cohomology of groups.

§6. DERIVED FUNCTORS

We continue to work in an abelian category. A covariant additive functor
F:@->@®
is said to be left exact if it transforms an exact sequence
O-M->M->M

into an exact sequence 0 - F(M') » F(M) —» F(M"). We remind the reader
that F is called additive if the map

Hom(A4’, A) > Hom(FA', FA)
1s additive.

We assume throughout that F is left exact unless otherwise specified, and
additive. We continue to assume that our abelian category has enough in-
Jjectives.

Given an object M, let
0O-M-I°51' 512 5
be an injective resolution, which we abbreviate by
0-> M-I,
where I,, is the complex I° — I' — 1> . We let I be the complex

011" 5125
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We define the right-derived functor R"F by
R'F(M) = H'(F(I)),
in other words, the n-th homology of the complex
0> F(I° - F(I') -» F(I*) >

Directly from the definitions and the monomorphism M — I, we see that there
is an isomorphism

ROF(M) = F(M).

This isomorphism seems at first to depend on the injective resolution, and so
do the functors R"F(M) for other n. However, from Lemmas 5.1 and 5.2 we
see that given two injective resolutions of M, there is a homomorphism between
them, and that any two homomorphisms are homotopic. If we apply the functor
F to these homomorphisms and to the homotopy, then we see that the homology
of the complex F(I) is in fact determined up to a unique isomorphism. One
therefore omits the resolution from the notation and from the language.

Example 1. Let R be a ring and let @ = Mod(R) be the category of R-
modules. Fix a module A. The functor M — Hom(A, M) is left exact, i.e. given
an exact sequence 0 - M' — M — M", the sequence

0 — Hom(A, M') - Hom(A, M) — Hom (A, M")

is exact. Its right derived functors are denoted by Ext"(A, M) for M variable.
Similarly, for a fixed module B, the functor X — Hom (X, B) is right exact,
and it gives rise to its left derived functors. For the explicit mirror image of
the terminology, see the end of this section. In any case, we may consider A as
variable. In §8 we shall go more deeply into this aspect of the formalism, by
dealing with bifunctors. It will turn out that Ext” (A, B) has a dual interpretation
as a left derived functor of the first variable and right derived functor of the
second variable. See Corollary 8.5.

In the exercises, you will prove that Ext!(A, M) is in bijection with iso-
morphism classes of extensions, of M by A, that is, isomorphism classes of exact
sequences

0>A—->E—>M—0.

The name Ext comes from this interpretation in dimension 1.
For the computation of Ext' in certain important cases, see Chapter XXI,
Theorems 4.6 and 4.11, which serve as examples for the general theory.

Example 2. Let R be commutative. The functor M — A ® M is right exact,
in other words, the sequence

AQM - AQM—->ARM — 0

is exact. Its left derived functors are denoted by Tor,(A, M) for M variable.
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Example 3. Let G be a group and let R = Z[G] be the group ring. Let @
be the category of G-modules, i.e. @ = Mod(R), also denoted by Mod(G). For
a G-module A, let A be the submodule (abelian group) consisting of those
elements v such that xv = v for all x € G. Then A + A€ is a left exact functor
from Mod(R) into the category of abelian groups. Its left derived functors give
rise to the cohomology of groups. Some results from this special cohomology
will be carried out in the exercises, as further examples of the general theory.

Example 4. Let X be a topological space (we assume the reader knows
what this is). By a sheaf & of abelian groups on X, we mean the data:

(a) For every open set U of X there is given an abelian group F (U).
(b) For every inclusion V C U of open sets there is given a homomorphism

rest : F(U) — F(V),
called the restriction from U to V, subject to the following conditions:

SH 1. F(empty set) = 0.
SH 2. resY is the identity F(U) — F(U).
SH 3. If W C V C U are open sets, then res), o res{ = resy .

SH 4. Let U be an open set and {V;} be an open covering of U. Let
s € F(U). If the restriction of s to each V; is 0, then s = 0.

SH 5. Let U be an open set and let {V;} be an open covering of U. Suppose
given s; € §F(V,) for each i, such that given i, j the restrictions of s,
and s; to V; N V; are equal. Then there exists a unique s € F (U) whose
restriction to V; is s; for all i.

Elements of F(U) are called sections of F over U. Elements of F(X) are called
global sections. Just as for abelian groups, it is possible to define the notion of
homomorphisms of sheaves, kernels, cokernels, and exact sequences. The asso-
ciation § +— F(X) (global sections functor) is a functor from the category of
sheaves of abelian groups to abelian groups, and this functor is left exact. Its
rightderived functors are the basis of cohomology theory in topology and algebraic
geometry (among other fields of mathematics). The reader will find a self-
contained brief definition of the basic properties in [Ha 77], Chapter II, §1, as
well as a proof that these form an abelian category. For a more extensive treatment
I recommend Gunning’s [Gu 91], mentioned in the introduction to Part IV,
notably Volume III, dealing with the cohomology of sheaves.

We now return to the general theory of derived functors. The general theory
tells us that these derived functors do not depend on the resolution by projectives
or injectives according to the variance. As we shall also see in §8, one can even
use other special types of objects such as acyclic or exact (to be defined), which
gives even more flexibility in the ways one has to compute homology. Through
certain explicit resolutions, we obtain means of computing the derived functors
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explicitly. For example, in Exercise 16, you will see that the cohomology of
finite cyclic groups can be computed immediately by exhibiting a specific free
resolution of Z adapted to such groups. Chapter XXI will contain several other
examples which show how to construct explicit finite free resolutions, which
allow the determination of derived functors in various contexts.

The next theorem summarizes the basic properties of derived functors.

Theorem 6.1. Let Q@ be an abelian category with enough injectives, and let
F: Q@ > ® be a covariant additive left exact functor to another abelian cate-
gory ®. Then:

(i) For each n 2 0, R"F as defined above is an additive functor from @
to ®. Furthermore, it is independent, up to a unique isomorphism of
functors, of the choices of resolutions made.

(ii) There is a natural isomorphism F ~ R°F.
(iii) For each short exact sequence
O-M->-M->M >0
and for each n = O there is a natural homomorphism
§": R"F(M") - R""'F(M)
such that we obtain a long exact sequence:
- R"F(M') - R"F(M) - R"F(M") % R™IF(M) -.

(iv) Given a morphism of short exact sequences

0 - M’ > M — M —0
0 N’ N N" 0

the &’s give a commutative diagram:
R'F(M") —2— R"* 'F(M")
RnF(Nn) = Rn+ 1F(N/)
(v) Foreachinjective object I of A and for eachn > O we have R"F(I) = 0.
Properties (1), (ii), (i1i), and (iv) essentially say that R"F is a delta-functor in a

sense which will be expanded in the next section. The last property (v) will be
discussed after we deal with the delta-functor part of the theorem.
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We now describe how to construct the é-homomorphisms. Given a short
exact sequence, we can find an injective resolution of M’, M, M" separately, but
they don’t necessarily fit in an exact sequence of complexes. So we must achieve
this to apply the considerations of §1. Consider the diagram:

0 0 0
0 M M M 0
v !
0 o b% , 70 0.

We give monomorphisms M’ — I'° and M” — " into injectives, and we want to
find X injective with a monomorphism M — X such that the diagram is exact.
We take X to be the direct sum

X=1°®I"

Since I'° is injective, the monomorphism M’ — I'° can be extended to a homo-
morphism M — I'°. We take the homomorphism of M into I'° @ I"° which
comes from this extension on the first factor I'°, and is the composite map

M - MH N 1!/()

on the second factor. Then M — X is a monomorphism. Furthermore ' » X
is the monomorphism on the first factor, and X — I"? is the projection on the
second factor. So we have constructed the diagram we wanted, giving the
beginning of the compatible resolutions.

Now we take the quotient homomorphism, defining the third row, to get an
exact diagram:

0 0 0

0 M —— M M ———0

0——I°——° I 0
| |

N NG +0
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where we let I = X, and N', N, N” are the cokernels of the vertical maps by
definition. The exactness of the N-sequence is left as an exercise to the reader.
We then repeat the construction with the N-sequence, and by induction construct
injective resolutions

0 0 0

0 M M M 0
V N

0 'l I, I, + 0

of the M-sequence such that the diagram of the resolutions is exact.
We now apply the functor F to this diagram. We obtain a short sequence of
complexes:

0 F(I') » F(I) » F(I") - 0,

which is exact because I = I’ @ I” is a direct sum and F is left exact, so F com-
mutes with direct sums. We are now in a position to apply the construction of
§1 to get the coboundary operator in the homology sequence:

R"F(M’) > R"F(M) > R"F(M") &5 R"* \F(M").

This is legitimate because the right derived functor is independent of the chosen
resolutions.

So far, we have proved (i), (ii), and (iii). To prove (iv), that is the naturality of
the delta homomorphisms, it is necessary to go through a three-dimensional
commutative diagram. At this point, I feel it is best to leave this to the reader,
since it is just more of the same routine.

Finally, the last property (v) is obvious, for if I is injective, then we can
use the resolution

0-I1-1-0

to compute the derived functors, from which it is clear that R"F = 0 for n > 0.
This concludes the proof of Theorem 6.1.

In applications, it is useful to determine the derived functors by means of
other resolutions besides injective ones (which are useful for theoretical
purposes, but not for computational ones). Let again F be a left exact additive
functor. An object X is called F-acyclic if R"F(X) = 0 for alln > 0.
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Theorem 6.2. Let
0-M->X"5 X5 X2
be a resolution of M by F-acyclics. Let
Y R R

be an injective resolution. Then there exists amorphismof complexes Xy — Iy
extending the identity on M, and this morphism induces an isomorphism

H'F(X) ~ H"F(I) = R"F(M)  foralln = 0.

Proof. The existence of the morphism of complexes extending the identity
on M is merely Lemma 5.2. The usual proof of the theorem via spectral se-
quences can be formulated independently in the following manner, shown to
me by David Benson. We need a lemma.

Lemma 6.3. Let Y (i = 0) be F-acyclic, and suppose the sequence
0-Y'>Y' 5y
is exact. Then
0- F(Y®) > F(Y) - F(Y?) —» -
is exact.
Proof. Since F is left exact, we have an exact sequence
0 - F(Y%) - F(Y') - F(Y?).

We want to show exactness at the next joint. We draw the cokernels:

0 —— Y ——Y!

\/\/
/\/\

So Z, = Coker(Y® —» Y'); Z, = Coker(Y' > Y?); etc. Applying F we have
an exact sequence

0— F(Y®) - F(Y')> F(Z') - R'F(Y°) = 0.
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So F(Z,) = Coker(F(Y°) — F(Y')). We now consider the exact sequence
0-7Z,-Y,-V
giving the exact sequence
0 F(Z") - F(Y?) - F(Y?)

by the left-exactness of F, and proving what we wanted. But we can now
continue by induction because Z, is F-acyclic, by the exact sequence

0 - R"F(Y') - R"F(Z') » R"'F(Y%) = 0.
This concludes the proof of Lemma 6.3.
We return to the proof of Theorem 6.2. The injective resolution
0-M- I,

can be chosen such that the homomorphisms X, — I, are monomorphisms for
n 2 0, because the derived functor is independent of the choice of injective
resolution. Thus we may assume without loss of generality that we have an
exact diagram:

0 0 0

v v

0 M——— X0 —— X X?
idl

0——M——° > It I

0 Yo ——y! Y2

0 0 0

defining Y" as the appropriate cokernel of the vertical map.
Since X" and I" are acyclic, so is Y" from the exact sequence

R¥F(I") - R*F(Y™) — R**1F(X™).
Applying F we obtain a short exact sequence of complexes

0- F(X)- F(I)- F(Y) - 0.
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whence the corresponding homology sequence
H" 'F(Y) - H"F(X) - H"F(I) » H"F(Y).

Both extremes are 0 by Lemma 6.3, so we get an isomorphism in the middie,
which by definition is the isomorphism

H"F(X) ~ R"F(M),

thus proving the theorem.

Left derived functors

We conclude this section by a summary of the properties of left derived
functors.
We consider complexes going the other way,

X, 2o X,» X, o X;>M-0
which we abbreviate by

We call such a complex a resolution of M if the sequence is exact. We call it a
projective resolution if X, is projective for all n = 0.

Given projective resolutions X ,;, Yy, and a homomorphism
oMM

there always exists a homomorphism X, — Y, extending ¢, and any two
such are homotopic.

In fact, one need only assume that X, is a projective resolution, and that
Y, is a resolution, not necessarily projective, for the proof to go through.

Let T be a covariant additive functor. Fix a projective resolution of an ob-
ject M,

Py—->M-0.
We define the left derived functor L, T by
L, T(M) = H(T(P)),
where T(P) is the complex
= T(P,) > - T(Py) » T(Py) = T(P,) - 0.

The existence of homotopies shows that L, T(M) is uniquely determined up
to a unique isomorphism if one changes the projective resolution.
We define T to be right exact if an exact sequence

M 5>M-M -0
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yields an exact sequence
T(M") > T(M) > T(M") - 0.
If T is right exact, then we have immediately from the definitions
Lo T(M) ~ M.

Theorems 6.1 and 6.2 then go over to this case with similar proofs. One
has to replace “injectives” by “projectives” throughout, and in Theorem 6.1,
the last condition states that for n > 0,

L,T(P)=0 if P is projective.

Otherwise, it is just a question of reversing certain arrows in the proofs. For
an example of such left derived functors, see Exercises 2—7 concerning the
cohomology of groups.

§7. DELTA-FUNCTORS

In this section, we axiomatize the properties stated in Theorem 6.1 following
Grothendieck.

Let @, ® be abelian categories. A (covariant) d-functor from @ to ® is a
family of additive functors F = {F,},-,, and to each short exact sequence

0O-M->-M->M -0
an associated family of morphisms

8" F'(M") - F"*Y{(M")
with n = 0, satisfying the following conditions:

DEL1. For each short exact sequence as above, there is a long exact
sequence

0> F(M') > FY(M) —» FO(M") - F\(M") - - -
- F'(M') > F'(M) > F'(M") - F"*}(M") -»

DEL2. For each morphism of one short exact sequence as above into
another 0 > N'-> N > N”" - 0, the d’s give a commutative
diagram:

FY(M") —2— Fr* Y(M")

F'(N") F* Y(N").

14
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Before going any further, it is useful to give another definition. Many proofs
in homology theory are given by induction from one index to the next. It turns
out that the only relevant data for going up by one index is given in two succes-
sive dimensions, and that the other indices are irrelevant. Therefore we general-
ize the notion of é-functor as follows.

A d-functor defined in degrees 0, 1 is a pair of functors (F°, F') and to
each short exact sequence

0-A>4-4"-0
an associated morphism

5 . FO(A//) N FI(A//)

satisfying the two conditions as before, but puttingn = 0, n + 1 = 1, and for-
getting about all other integers n. We could also use any two consecutive posi-
tive integers to index the J-functor, or any sequence of consecutive integers
= 0. In practice, only the case of all integers = 0 occurs, but for proofs, it is
useful to have the flexibility provided by using only two indices, say 0, 1.

The d-functor F is said to be universal, if given any other -functor G of @
into @, and given any morphism of functors

fO . FO d GO,
there exists a unique sequence of morphisms

S F" > G"

for all n 2 0, which commute with the " for each short exact sequence.

By the definition of universality, a §-functor G such that G° = F? is uniquely
determined up to a unique isomorphism of functors. We shall give a condition
for a functor to be universal.

An additive functor F of @ into ® is called erasable if to each object 4 there
exists a monomorphism u: A - M for some M such that F(u) = 0. In practice,
it even happens that F(M) = 0, but we don’t need it in the axiomatization.

Linguistic note. Grothendieck originally called the notion “effaceable” in
French. The dictionary translation is “erasable,” as I have used above. Ap-
parently people who did not know French have used the French word in English,
but there is no need for this, since the English word is equally meaningful and
convenient.

We say the functor is erasable by injectives if in addition M can be taken to
be injective.
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Example. Of course, a right derived functor is erasable by injectives, and
a left derived functor by projectives. However, there are many cases when one
wants erasability by other types of objects. In Exercises 9 and 14, dealing with
the cohomology of groups, you will see how one erases the cohomology functor
with induced modules, or regular modules when G is finite. In the category of
coherent sheaves in algebraic geometry, one erases the cohomology with locally
free sheaves of finite rank.

Theorem 7.1. Let F = {F"} be a covariant -functor from Q into ®. If F" is
erasable for each n > 0, then F is universal.

Proof. Given an object A4, we erase it with a monomorphism u, and get a
short exact sequence:

0-A435M->X->0.

Let G be another d-functor with given f,: F® - G°. We have an exact com-
mutative diagram

o

FO(M) ——F%(X) FI(A) 0
Jo So Efl?

i
GO(M)__’GO(X)TG’(A)

We get the 0 on the top right because of the erasability assumption that
Fip)=0
We want to construct
fi(A) 1 F(A) = G'(4)

which makes the diagram commutative, is functorial in 4, and also commutes
with the §. Commutativity in the left square shows that Ker J; is contained in
the kernel of - f,. Hence there exists a unique homomorphism

fi(A): Fi(4) > G}(4)

which makes the right square commutative. We are going to show that f;(A4)
satisfies the desired conditions. The rest of the proof then proceeds by induction
following the same pattern.

We first prove the functoriality in A.

Let u: A - B be a morphism. We form the push-out P in the diagram

A——>M

I

— P
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Since ¢ is a monomorphism, it follows that B — P is a monomorphism also.
Then we let P — N be a monomorphism which erases F,. This yields a com-
mutative diagram

0——4 -~ M X—0
0 — B > N >Y >0

where B — N is the composite B — P — N, and Y is defined to be the cokernel
of B— N.
Functoriality in A means that the following diagram is commutative.

F'(4)—=“> F'(B)
Ju(4) S1(B)

G'(4) ——G'(B)

Fl(w)

This square is the right-hand side of the following cube:

5, ,

FY(u)
\F(IW)

| 5 |
1y(X) Yo L B

!
Y ¢ G'(A) .
P
GO(X),,.——/ Gl(u) fl(B)
G(w) Y
\/ 5/'01(3)
G(Y)

All the faces of the cube are commutative except possibly the right-hand face.
It is then a general fact that if the top maps here denoted by 6 are epimorphisms,
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then the right-hand side is commutative also. This can be seen as follows. We
start with f,(B)F'(u)6r. We then use commutativity on the top of the cube,
then the front face, then the left face, then the bottom, and finally the back face.
This yields

[iBF (u)op = G'(u) f1(A)dr.
Since 0 is an epimorphism, we can cancel  to get what we want.
Second, we have to show that f; commutes with 8. Let
04 >4-54"-0
be a short exact sequence. The same push-out argument as before shows that

there exists an erasing monomorphism 0 - A’ - M and morphisms v, w
making the following diagram commutative:

0 A > A > A" 0
0 A »M - X 0

Here X is defined as the appropriate cokernel of the bottom row. We now
consider the following diagram:

FO(A”")
FO(w) fo
°<A")
FO(X) > F1(A)
Go(w) 8¢
f,(4%)
GO(X) > G'(4)

Our purpose is to prove that the right-hand face is commutative. The triangles
on top and bottom are commutative by the definition of a é-functor. The
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left-hand square is commutative by the hypothesis that f; is a morphism
of functors. The front square is commutative by the definition of f,(A4").
Therefore we find:

Ji(A)05 = f1(A)3pFO%(w)  (top triangle)

= 0p fo Fo(w) (front square)
= 8, G(W) f, (left square)
= 0r fo (bottom triangle).

This concludes the proof of Theorem 7.1, since instead of the pair of indices
(0, 1) we could have used (n,n + 1).

Remark. The morphism f; constructed in Theorem 7.1 depends functori-
ally on f, in the following sense. Suppose we have three delta functors F, G, H
defined in degrees 0, 1. Suppose given morphisms

fo:F° > G° and g,:G° - H°
Suppose that the erasing monomorphisms erase both F and G. Then we can
construct f; and g, by applying the theorem. On the other hand, the composite
gofo = ho: F* - H°

is also a morphism of functors, and the theorem yields the existence of a morph-
ism

h,:F' - H!
such that (h,, h,) is a 6-morphism. By uniqueness, we therefore have

hy =g, /1.
This is what we mean by the functorial dependence as mentioned above.

Corollary 7.2. Assume that @ has enough injectives. Then for any left exact
functor F: Q@ — ®, the derived functors R"F with n 2 0 form a universal
o-functor with F ~ R°F, which is erasable by injectives. Conversely, if
G = {G"},»¢ is a universal é-functor, then G° is left exact, and the G" are
isomorphic to R"G® for eachn 2 0.

Proof. If F is a left exact functor, then the {R"F},,, form a J-functor
by Theorem 6.1. Furthermore, for any object 4, let u: 4 — I be a monomor-
phism of A4 into an injective. Then R"F(I) =0 for n >0 by Theorem
6.1(iv), so R"F(u) = 0. Hence R"F is erasable for all n > 0, and we can apply
Theorem 7.1.

Remark. As usual, Theorem 7.1 applies to functors with different variance.
Suppose {F"} is a family of contravariant additive functors, with n ranging over
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a sequence of consecutive integers, say for simplicity n = 0. We say that Fis a
contravariant é-functor if given an exact sequence

0O-M->M->-M -0
then there is an associated family of morphisms
5n: Fn(M/) - Fn+ I(M/)

satisfying DEL 1 and DEL 2 with M’ interchanged with M” and N’ inter-
changed with N”. We say that F is coerasable if to each object A there exists an
epimorphism u: M — A such that F(u) = 0. We say that F is universal if
given any other J-functor G of @ into ® and given a morphism of functors

fo:F® > G°
there exists a unique sequence of morphisms
Jo F" > G"
for all n = 0 which commute with é for each short exact sequence.

Theorem 7.1'. Let F = {F"} (n ranging over a consecutive sequence of
integers = 0) be a contravariant S-functor from Q into ®, and assume that
F" is coerasable for n = 1. Then F is universal.

Examples of -functors with the variances as in Theorems 7.1 and 7.1’ will
be given in the next section in connection with bifunctors.

Dimension shifting

Let F = {F"} be a contravariant delta functor with n > 0. Let € be a
family of objects which erases F" for all n = 1, that is F'(E) = 0 for n = 1 and
E e &. Then such a family allows us to do what is called dimension shifting as
follows. Given an exact sequence

0-Q—-E-M-0
with E € &, we get for n = 1 an exact sequence
0 = FY(E) > F*Q) —» F"" (M) - F""}(E) = 0,
and therefore an isomorphism
F"(Q) = F""Y(M),
which exhibits a shift of dimensions by one. More generally:
Proposition 7.3. Let
0-Q->E,_,—» - >E;»M-0
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be an exact sequence, such that E;€ &. Then we have an isomorphism
FAQ) ~ FF*"(M)  forpz L

Proof. Let Q = Q,. Also without loss of generality, take p = 1. We may
insert kernels and cokernels at each step as follows:

- —————»Eo

VAVAVAWAN
VEVAWANI/ARRN

Then shifting dimension with respect to each short exact sequence, we find
isomorphisms

FY Q) ~ F¥(Qu-p) ~ -+ = F""{(M).
This concludes the proof.

One says that M has F-dimension < d if F'(M) =0 for n=d + 1. By
dimension shifting, we see that if M has F-dimension < d, then Q has F-
dimension < d — n in Proposition 7.3. In particular, if M has F-dimension n,
then Q has F-dimension 0.

The reader should rewrite all this formalism by changing notation, using for
F the standard functors arising from Hom in the first variable, on the category
of modules over a ring, which has enough projectives to erase the left derived
functors of

A+ Hom(A, B),

for B fixed. We shall study this situation, suitably axiomatized, in the next sec-
tion.

§8. BIFUNCTORS

In an abelian category one often deals with Hom, which can be viewed as a
functor in two variables; and also the tensor product, which is a functor in two
variables, but their variance is different. In any case, these examples lead to the
notion of bifunctor. This is an association

(A, B)— T(A, B)
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where A4, B are objects of abelian categories @ and ® respectively, with values
in some abelian category. This means that T is functorial in each variable, with
the appropriate variance (there are four possibilities, with covariance and con-
travariance in all possible combinations); and if, say, T is covariant in all
variables, we also require that for homomorphisms A" - 4 and B’ — B there
is a commutative diagram

T(A', B)—— T(4, B)

T(A, B) — T(4, B).

If the variances are shuffled, then the arrows in the diagram are to be reversed in

the appropriate manner. Finally, we require that as a functor in each variable,
T is additive.

Note that Hom is a bifunctor, contravariant in the first variable and covari-
ant in the second. The tensor product is covariant in each variable.
The Hom functor is a bifunctor T satisfying the following properties:

HOM . T is contravariant and left exact in the first variable.
HOM 2. T is covariant and left exact in the second variable.

HOM 3. For any injective object J the functor
A—T(A,J)
is exact.

They are the only properties which will enter into consideration in this
section. There is a possible fourth one which might come in other times:

HOM 4. For any projective object Q the functor
B—T(Q, B)
is exact.

But we shall deal non-symmetrically, and view T as a functor of the second
variable, keeping the first one fixed, in order to get derived functors of the second
variable. On the other hand, we shall also obtain a §-functor of the first variable
by using the bifunctor, even though this -functor is not a derived functor.

If @ has enough injectives, then we may form the right derived functors with
respect to the second variable

B+— R"T(A, B), also denoted by R"T,(B),



808 GENERAL HOMOLOGY THEORY XX, §8

fixing A, and viewing B as variable. If T = Hom, then this right derived functor
is called Ext, so we have by definition

Ext"(4, X) = R" Hom(4, X).

We shall now give a criterion to compute the right derived functors in terms
of the other (first) variable. We say that an object 4 is T-exact if the functor
B+ T(A, B) is exact. By a T-exact resolution of an object A, we mean a resolu-
tion

M, -M,—-A4-0

where M, is T-exact for alln = 0.

Examples. Let @ and ® be the categories of modules over a commutative
ring. Let T = Hom. Then a T-exact object is by definition a projective module.
Now let the transpose of T be given by

'T(A4, B) = T(B, A).

Then a ‘T-exact object is by definition an injective module.
If T is the tensor product, such that T(A, B) = A ® B, then a T-exact object
is called flat.

Remark. In the category of modules over a ring, there are enough pro-
jectives and injectives. But there are other situations when this is not the case.
Readers who want to see all this abstract nonsense in action may consult
[GriH 78], [Ha 77], not to speak of [SGA 6] and Grothendieck’s collected works.
It may genuinely happen in practice that 8 has enough injectives but @ does not
have enough projectives, so the situation is not all symmetric. Thus the functor
A > R"T(A, B) for fixed B is not a derived functor in the variable A. In the
above references, we may take for @ the category of coherent sheaves on a
variety, and for ® the category of all sheaves. We let T = Hom. The locally
free sheaves of finite rank are T-exact, and there are enough of them in @. There
are enough injectives in 8. And so it goes. The balancing act between T-exacts
on one side, and injectives on the other is inherent to the situation.

Lemma 8.1. Let T be a bifunctor satisfying HOM 1, HOM 2. Let Ae @,
and let M, — A — 0, that is

M, -My;—>A-0
be a T-exact resolution of A. Let F'(B) = H(T(M, B)) for Be 8. Then F

is a d-functor and F°(B) = T(A, B). If in addition T satisfies HOM 3,
then F"(J) = 0 for J injective and n = 1.
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Proof. Given an exact sequence
0-B ->B->B" -0
we get an exact sequence of complexes
0- T(M,B)—> T(M, B)-» T(M, B") - 0,

whence a cohomology sequence which makes F into a é-functor. For n =0
we get F(B) = T(A, B) because X — T(X, B) is contravariant and left exact
for X e @ If B is injective, then F*(B) = 0 for n = 1 by HOM 3, because
X — T(X, B) is exact. This proves the lemma.

Proposition 8.2. Let T be a bifunctor satisfying HOM 1, HOM 2, HOM 3.
Assume that ® has enough injectives. Let A€ Q. Let

M,->A-0
be a T-exact resolution of A. Then the two d-functors
B+—R"T(A,B) and B+~ H"(T(M, B))

are isomorphic as universal é-functors vanishing on injectives, for n = 1, and
such that

R°T(A, B) = HYT(M), B) = T(A, B).

Proof. This comes merely from the universality of a §-functor erasable
by injectives.

We now look at the functoriality in A4.

Lemma 8.3. Let T satisfy HOM 1, HOM 2, and HOM 3. Assume that
® has enough injectives. Let

04 >4-4">0
be a short exact sequence. Then for fixed B, we have a long exact sequence
0- T(A",B)—> T(4,B) > T(A, B) —»
- R'T(A”, B) > R'T(4, B) -» R'T(4, B) »
such that the association
A— R"T(A, B)

is a O-functor.
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Proof. Let0 — B — I be an injective resolution of B. From the exactness
of the functor A+ T(A4, J), for J injective we get a short exact sequence of
complexes

0 T(A", 1p) > T(A, Ig) > T(4', 1) - 0.

Taking the associated long exact sequence of homology groups of these com-
plexes yields the sequence of the proposition. (The functorality is left to
the readers.)

If T = Hom, then the exact sequence looks like
0 - Hom(A", B) > Hom(A, B) - Hom(A4', B) —»
— Ext!(4”, B) - Ext!(4, B) —» Ext!(4', B) -»

and so forth.
We shall say that @ has enough T-exacts if given an object 4 in @ there is a
T-exact M and an epimorphism

M->A4-0.

Proposition 8.4. Let T satisfy HOM 1, HOM 2, HOM 3. Assume that ®
has enough injectives. Fix Be ®. Then the association

A R"T(A, B)

is a contravariant é-functor on @ which vanishes on T-exacts, for n = 1. If
@ has enough T-exacts, then this functor is universal, coerasable by T-exacts,
with value

R°T(A, B) = T(A4, B).

Proof. By Lemma 8.3 we know that the association is a d-functor, and it
vanishes on T-exacts by Lemma 8.1. The last statement is then merely an
application of the universality of erasable d-functors.

Corollary 8.5. Let @ = ® be the category of modules over aring. For fixed
B, let ext"(A4, B) be the left derived functor of A+ Hom(A, B), obtained by
means of projective resolutions of A. Then

ext’(4, B) = Ext"(4, B).

Proof. Immediate from Proposition 8.4.

The following proposition characterizes T-exacts cohomologically.
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Proposition 8.6. Let T be a bifunctor satisfying HOM 1, HOM 2, HOM 3.
Assume that ® has enough injectives. Then the following conditions are
equivalent :

TE1. Ais T-exact.

TE 2. For every B and every integer n = 1, we have R"T(A, B) = 0.
TE 3. For every B we have R'T(A, B) = 0.

Proof. Let

0-B->I°>1'S

be an injective resolution of B. By definition, R"T(A, B) is the n-th homology of
the sequence

0 T(A4,1° - T(A, I') > T(A, I*) >

If A is T-exact, then this sequence is exact for n > 1, so the homology is 0 and
TE 1 implies TE 2. Trivially, TE 2 implies TE 3. Finally assume TE 3. Given
an exact sequence

0-B->B—->B" -0,
we have the homology sequence
0— T(A, B)—> T(A, B) » T(A, B") > R'T(A, B') —.

IfR'T(A, B') = 0, then by definition A is T-exact, thus proving the proposition.
We shall say that an object 4 has T-dimension < d if

R"T(A,B) =0 for n > d and all B.

Then the proposition states in particular that A is T-exact if and only if A has
T-dimension 0.

Proposition 8.7. Let T satisfy HOM 1, HOM 2, HOM 3. Assume that ®
has enough injectives. Suppose that an object A admits a resolution

O0-E;,»E;y—»- —>E;—>A-0

where Eg, ..., E, are T-exact. Then A has T-dimension < d. Assume this
is the case. Let

0—>Q—>Ld_1—>-~-—>LO—>A—>O

be a resolution where L, ..., Ly_, are T-exact. Then Q is T-exact also.

Proof. By dimension shifting we conclude that Q has T-dimension O,
whence Q is T-exact by Proposition 8.6.
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Proposition 8.7, like others, is used in the context of modules over a ring.
In that case, we can take T = Hom, and

R"T(A, B) = Ext"(A, B).
For A to have T-dimension < d means that
Ext"(4,B) = 0 for n > d and all B.

Instead of T-exact, one can then read projective in the proposition.
Let us formulate the analogous result for a bifunctor that will apply to the
tensor product. Consider the following properties.

TEN 1. T is covariant and right exact in the first variable.
TEN 2. T is covariant and right exact in the second variable.
TEN 3. For any projective object P the functor
A T(A, P)
is exact.

As for Hom, there is a possible fourth property which will play no role in this
section:

TEN 4. For any projective object Q the functor
B+ T(Q, B)
is exact.

Proposition 8.2". Let T be a bifunctor satisfying TEN 1, TEN 2, TEN 3.
Assume that B has enough projectives. Let Ae Q. Let

M,>A4-0
be a T-exact resolution of A. Then the two d-functors
B—L,T(A,B) and B~ H/(T(M, B))
are isomorphic as universal d-functors vanishing on projectives, and such that
LyT(A, B) = Hy(T(M), B) = T(A, B).

Lemma 8.3'. Assume that T satisfies TEN 1, TEN 2, TEN 3. Assume that
® has enough projectives. Let

004 >4-54"-0
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be a short exact sequence. Then for fixed B, we have a long exact sequence:
- L, T(A,B)—> L,T(A,B)» L, T(A", B) >
- T(A', B) » T(A, B) » T(4", B) - 0

which makes the association A — L, T(A, B) a é-functor.

Proposition 8.4'. Let T satisfy TEN 1, TEN 2, TEN 3. Assume that ® has
enough projectives. Fix Be ®. Then the association

A L,T(4, B)

is a contravariant é-functor on @ which vanishes on T-exacts forn 2 1. If @
has enough T-exacts, then this functor is universal, coerasable by T-exacts,
with the value

L,T(A, B) = T(A, B).

Corollary 8.8. If there is a bifunctorial isomorphism T(A, B) ~ T(B, A),
and if B is T-exact, then for all A, L,T(4, B) =0 for n 2 1. In short,
T-exact implies acyclic.

Proof. Let M, = P, be a projective resolution in Proposition 8.2. By
hypotheses, X — T(X, B) is exact so H(T(P,B))=0 for n>1; so the
corollary is a consequence of the proposition.

The above corollary is formulated so as to apply to the tensor product.
Proposition 8.6'. Let T be a bifunctor satisfying TEN 1, TEN 2, TEN 3.

Assume that ® has enough projectives. Then the following conditions are
equivalent :

TE1. Ais T-exact.
TE2. For every B and every integer n = 1 we have L, T(A, B) = 0.
TE3. For every B, we have L, T(A, B) = 0.

Proof. We repeat the proof of 8.6 so the reader can see the arrows pointing
in different ways.

Let
-0, »0,>B-0

be a projective resolution of B. By definition, L, T(A, B) is the n-th homology
of the sequence

- T(A, Ql) - T(A’ QO) -0



814 GENERAL HOMOLOGY THEORY XX, §9

If A is T-exact, then this sequence is exact for n = 1, so the homology is 0, and
TE 1 implies TE 2. Trivially, TE 2 implies TE 3. Finally, assume TE 3. Given
an exact sequence

0-B->B—->B" -0
we have the homology sequence
- LT(A,B") > T(A,B) > T(A, B) > T(4, B") -» 0.

If L;T(A, B")is 0, then by definition, 4 is T-exact, thus proving the proposition.

§9. SPECTRAL SEQUENCES

This section is included for convenience of reference, and has two purposes:
first, to draw attention to an algebraic gadget which has wide applications in
topology, differential geometry, and algebraic geometry, see Griffiths-Harris,
[GrH 78]; second, to show that the basic description of this gadget in the context
in which it occurs most frequently can be done in just a few pages.

In the applications mentioned above, one deals with a filtered complex
(which we shall define later), and a complex may be viewed as a graded object,
with a differential d of degree 1. To simplify the notation at first, we shall deal
with filtered objects and omit the grading index from the notation. This index
is irrelevant for the construction of the spectral sequence, for which we follow
Godement.

So let F be an object with a differential (i.e. endomorphism) d such that
d?> = 0. We assume that F is filtered, that is that we have a sequence

F=F’o>F!'oF?>...oF' > "t = {0},

and that dF? < F*. This data is called afiltered differential object. (We assume
that the filtration ends with 0 after a finite number of steps for convenience.)
One defines the associated graded object

GrF = @ Gr’F where Gr? F = FP/FP*!

pz0

In fact, Gr F is a complex, with a differential of degree 0 induced by d itself, and
we have the homology H(Gr? F).

The filtration {F?} also induces a filtration on the homology H(F, d) = H(F);
namely we let

H(F)? = image of H(F?) in H(F).
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Since d maps F? into itself, H(F?) is the homology of F? with respect to the
restriction of d to F?, and it has a natural image in H(F) which yields this filtra-
tion. In particular, we then obtain a graded object associated with the filtered
homology, namely

Gr H(F) = P Gr*? H(F).
A spectral sequence is a sequence {E,, d,} (r = 0) of graded objects

E,=@E

p20
together with homomorphisms (also called differentials) of degree r,
d,: EP — EP*
satisfying d? = 0, and such that the homology of E, is E, , ,, that is
H(E,) =E,,,.

In practice, one usually has E, = E,,, = ---forr = r,. This limit object is
called E_, and one says that the spectral sequence abuts to E . Actually, to be
perfectly strict, instead of equalities one should really be given isomorphisms,
but for simplicity, we use equalities.

Proposition 9.1. Let F be a filtered differential object. Then there exists a
spectral sequence {E,} with:

E§ = FP/FP*1, E? = H(Gr? F); E? = Gr? H(F).
Proof. Define

Z? = {x € F? such that dx e F"*"}
EP = ZP/[dZP-~V + ZP* 1]

The definition of E? makes sense, since Z? is immediately verified to contain
dZP={r~Y 4 zr*! Furthermore, d maps Z? into Z?*’, and hence includes a
homomorphism

d,: EP — EP*".

We shall now compute the homology and show that it is what we want.
First, for the cycles: An element x € Z? represents a cycle of degree p in E,
if and only if dx e dei,l + fo{“, in other words

dx =dy +z,  withyeZzZr*! and zeZzZP*j*%.
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Write x = y + u,50du = z. Thenue F” and due FP*"*! thatisueZ?, . It
follows that

p-cycles of E, = (ZP,, + ZPTHNdZPZI*! + ZP1 ).

On the other hand, the p-boundaries in E, are represented by elements of
dZP~", which contains dZ?-;*!. Hence

p-boundaries of E, = (dZP~" + ZPXDdZPZ;HY 4+ ZPH)).
Therefore
HXE,) = (Z0y, + ZEX)/AZ27" + ZP1Y)
=Z0 /(2] 02! + Z])).
Since
Z¢,, >dZP™" and ZP, N ZP'! =2Zrt
it follows that
HYE,) = Z2,,/dZ!™" + Z!"') = El.
thus proving the property of a spectral sequence.
Remarks. It is sometimes useful in applications to note the relation
dZP=~D 4 ZPrl = ZP ~ (dFP"H! 4 FPYY),

The verification is immediate, but Griffiths-Harris use the expression on the
right in defining the spectral sequence, whereas Godement uses the expression
on the left as we have done above. Thus the spectral sequence may also be
defined by

EF = ZP mod(dFP~"*' + Frth),

This is to be interpreted in the sense that Z mod S means
(Z +8)/)S or ZAZNS).

The term EJ is FP/FP*! immediately from the definitions, and by the
general property already proved, we get Ef = H(FP/FP*'). As to E%, for
r large we have ZP = Z? = cycles in F?, and

E?, = ZP/(ZP*! + (dF° n FP))
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which is independent of r, and is precisely Gr” H(F), namely the p-graded
component of H(F), thus proving the theorem.

The differential d, can be specified as follows.
Proposition 9.2. The homomorphism
d,:E? — Eb*!

is the coboundary operator arising from the exact sequence

0 — FPH1/FP*2 , FPJFP*2 5 FP/FPH1 5 ()
viewing each term as a complex with differential induced by d.
Proof. Indeed, the coboundary

8:E? = H(FP/FP*Y) > H(FP*'/FP*?) = E§*!

is defined on a representative cycle z by dz, which is the same way that we de-
fined d,.

In most applications, the filtered differential object is itself graded, because
it arises from the following situation. Let K be a complex, K = (K?, d) with
p 2 0 and d of degree 1. By a filtration FK, also called a filtered complex, we
mean a decreasing sequence of subcomplexes

K=FK>F'K>FK>--2FK>F*"K={0}
Observe that a short exact sequence of complexes
0-K->K->K' -0

gives rise to a filtration K > K’ o {0}, viewing K’ as a subcomplex.
To each filtered complex FK we associated the complex

GrFK = GrK = @ Gr’ K,

p20

where
Gr? K = FPK/FP K,

and the differential is the obvious one. The filtration F?K on K also induces a
filtration FPH(K) on the cohomology, by

FPHYK) = FPZ%/FPBA.
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The associated graded homology is

Gr H(K) = @ Gr* H(K),

p:q
where

Gr? HYK) = FPHYK)/F?* 'HYK).

A spectral sequence is a sequence {E,, d,} (r = 0) of bigraded objects

E, = @ Ep¢

P.q20

together with homomorphisms (called differentials)
d,:EP9— EP*ra 1l qatisfying d? = 0,
and such that the homology of E, is E, , |, that is
H(E)=E,,,.

A spectral sequence is usually represented by the following picture:

XX, §9

In practice, one usually has E, = E,,; = --- for r = r,. This limit object

is called E , and one says that the spectral sequence abuts to E .

Proposition 9.3. Let FK be a filtered complex. Then there exists a spectral

sequence {E,} with:
ER? = FPKP*9/FPrIKrta;
EY? = HP*9(Gr* K);
EP 4 = Gr? (H?*4(K)).
The last relation is usually written
E, = H(K),

and we say that the spectral sequence abuts to H(K).
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The statement of Proposition 9.3 is merely a special case of Proposition 9.1,
taking into account the extra graduation.

One of the main examples is the spectral sequence associated with a double
complex

K= @ K»
p.q20
which is a bigraded object, together with differentials
d:KPrt— KPrh4 and d": KP4 — KPat!
satisfying
d*=d?*=0 and dd" +d'd =0.

We denote the double complex by (K, d’, d”). The associated single complex
(Tot(K), D) (Tot for total complex), abbreviated K*, is defined by

K'= @ K* and D=d +d"

ptq=n

There are two filtrations on (K*, D) given by

FPK" = @ KP
p'tqg=n
p'zp

"FIK"= @ Kr7.
P +,q’ =n
q9'z4q
There are two spectral sequences {'E,} and {"E,}, both abutting to H(Tot(K)).

For applications, see [GrH 78], Chapter 3, §5; and also, for instance, [FuL 85],
Chapter V. There are many situations when dealing with a double complex directly
is a useful substitute for using spectral sequences, which are derived from double
complexes anyhow.

We shall now derive the existence of a spectral sequence in one of the most
important cases, the Grothendieck spectral sequence associated with the com-
posite of two functors. We assume that our abelian category has enough injectives.

Let C = @ C” be a complex, and suppose C? = 0 if p < 0 for simplicity.
We define injective resolution of C to be a resolution

0-C-1°sI'51*5 ...
written briefly
such that each I’ is a complex, I’ = @ I’ #, with differentials

Jsp. 1ip J.pt1
17 A |
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and such that I/'7 is an injective object. Then in particular, for each p we get
an injective resolution of C?, namely:

0> CP—o %P 5 hP ...
We let:
Z7? = Ker d”? = cycles in degree p
B"? = Im d?~! = boundaries in degree p
H’»? = Z}?/B’? = homology in degree p.
We then get complexes

0- ZP(C)—» Z2%7 > ZVP >
0 - B*(C) - B>? - B''?
0- HY(C) - H>? - H'? -

We say that the resolution 0 — C — I is fully injective if these three com-
plexes are injective resolutions of Z?(C), B?(C) and HF(C) respectively.

Lemma 9.4. Let
0-M->-M->M -0
be a short exact sequence. Let
0-M -1, and 0->M" - Iy
be injective resolutions of M' and M". Then there exists an injective resolution
0-M-1I,,

of M and morphisms which make the following diagram exact and commutative:

M’ AI\,I AIMH 4\0
I T

0 > M’ M M'——0
] | |
0 0 0

Proof. The proof is the same as at the beginning of the proof of Theorem
6.1.
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Lemma 9.5. Given a complex C there exists a fully injective resolution of C.

Proof. We insert the kernels and cokernels in C, giving rise to the short
exact sequences with boundaries B? and cycles Z7:

0->B?—>Z?->H? >0
0-2Z, 'S (Cr ! 5B 0.
We proceed inductively. We start with an injective resolution of
0-2ZF ' 5P B0
using Lemma 9.4. Next let
0- HP > Iy,

be an injective resolution of H?. By Lemma 9.4 there exists an injective resolu-
tion

027> 1,

which fits in the middle of the injective resolutions we already have for B? and
HP. This establishes the inductive step, and concludes the proof.

Given a left exact functor G on an abelian category with enough injectives,
we say that an object X is G-acyclic if R°G(X) = 0 for p 2 1. Of course,

R°G(X) = G(X).

Theorem 9.6. (Grothendieck spectral sequence). Let
T:-@A->® and G:®B - C

be covariant left exact functors such that if 1 is injective in @, then T(I) is
G-acyclic. Then for each A in Q there is a spectral sequence {E (A)}, such that

EB9(A) = RPG(R'T(A))

and EP'? abuts (with respect to p) to RP*4GT) A), where q is the grading
index.

Proof. Let A be an object of @, and let 0 - 4 — C, be an injective resolu-
tion. We apply T to get a complex

TC: 0> TC°>TC' > TC* -
By Lemma 9.5 there exists a fully injective resolution
O d TC d ITC

which has the 2-dimensional representation:
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0 AIO,O ArIl.O ;12,0 >
0 ~>TC° »yTC' —— TC?—
[ { |
0 0 0

Then GI is a double complex. Let Tot(GI) be the associated single complex.
We now consider each of the two possible spectral sequences in succession,
which we denote by 'EP*? and 2EP4.

The first one is the easiest. For fixed p, we have an injective resolution

0> TCP - 1§

where we write 15 instead of Ic,. This is the p-th column in the diagram. By
definition of derived functors, GI? is a complex whose homology is R?G, in
other words, taking homology with respect to d” we have

"HP-9(GI) = HYU(GIP) = (RIG)(TCP).

By hypothesis, C? injective implies that (R‘G)(TC*) = 0 for ¢ > 0. Since G
is left exact, we have R°G(TC?) = TCP. Hence we get

GT(CP) ifqg=0
"HP-9(GI) = . )
0 if g > 0.
Hence the non-zero terms are on the p-axis, which looks like
0 - GT(C®°) - GT(C') » GT(C*) -
Taking 'HP we get

RP(GT)(A) ifqg=0

IEP,q A :{
24 =10 if ¢ > 0.

This yields
H"(Tot(GI)) ~ R"(GT)XA).
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The second one will use the full strength of Lemma 9.5, which had not been
used in the first part of the proof, so it is now important that the resolution
I1¢ is fully injective. We therefore have injective resolutions

0— Z/(TC)—»'Z%P > 1ZVp 51720
0 - B(TC) - 'B>P - 'B:? - 1B2.r ,
0> HTC)-» 'H>? > 'H"? - 'H*P
and the exact sequences
0 1Z%P 5 [P 5 1BITLP ()
0-!'B*?P 1797 L, 1H%P 5 ()

split because of the injectivity of the terms. We denote by 1P’ the p-th row of the
double complex I = {I*?}. Then we find:

'"H*?(GI) = HYGI") = G'Z*?/G'B*? by the first split sequence

= G'H*"(I) by the second split sequence
because applying the functor G to a split exact sequence yields a split exact
sequence.
Then

2ER4 = "HP('HOP(GI) = HP(G'HYP(I)).

By the full injectivity of the resolutions, the complex 'H%”(I) with p = 0 is an
injective resolution of

HYTC) = (RITXA).
Furthermore, we have
HP(G'H%P) = RPG(RIT(A)),

since a derived functor is the homology of an injective resolution. This proves
that (RPG)RYT(A)) abuts to R"(GT)(A), and concludes the proof of the theorem.

Just to see the spectral sequence at work, we give one application relating
it to the Euler characteristic discussed in §3.
Let @ have enough injectives, and let

T:@->@

be a covariant left exact functor. Let &, be a family of objects in @ giving rise
to a K-group. More precisely, in a short exact sequence in @, if two of the objects
lie in §,, then so does the third. We also assume that the objects of &, have
finite RT -dimension, which means by definition that if 4 € §, then RIT(4) = 0



824 GENERAL HOMOLOGY THEORY XX, §9

for all i sufficiently large. We could take §, in fact to be the family of all objects
in @ which have finite RT-dimension.
We define the Euler characteristic associated with T on K(&,) to be

12(4) = 3 (= 1) c(R'T(4).
i=0

The cl denotes the class in the K-group K(g&,) associated with some family
&, of objects in ®, and such that R'T(A) € &, for all 4 € F,. This is the mini-
mum required for the formula to make sense.

Lemma 9.7. The map yr extends to a homomorphism

K(&.) - K(Fs).
Proof. Let
04 >A4A-A4"-0
be an exact sequence in § Then we have the cohomology sequence
- RIT(A) > R'T(4) > R'T(A") » R*'T(4) >
in which all but a finite number of terms are 0. Taking the alternating sum in the
K-group shows that y is an Euler-Poincaré map, and concludes the proof.

Note that we have merely repeated something from §3, in a jazzed up context.
In the next theorem, we have another functor

G.®- C,

and we also have a family &, giving rise to a K-group K(&.). We suppose that
we can perform the above procedure at each step, and also need some condition
so that we can apply the spectral sequence. So, precisely, we assume:

CHAR1. For all i, R‘'T maps &, into &, R'G maps &, into &, and
RY(GT) maps &, into §,.

CHAR 2. Each subobject of an element of &, lies in §, and has finite
RT- and R(GT)-dimension; each subobject of an element of
& lies in &, and has finite RG-dimension.

Theorem 9.8. Assumethat T: @ — ® and G: B — C satisfy the conditions
CHAR 1 and CHAR 2. Also assume that T maps injectives to G-acyclics.
Then

X6 ° Xr = XGr-



XX, §9 SPECTRAL SEQUENCES 825

Proof. By Theorem 9.6, the Grothendieck spectral sequence of the com-
posite functor implies the existence of a filtration

.. < FPRY(GT)A) < FP*'RY(GT)A) <
of RY(GT)A), such that

FPtYJFP ~ ER"7P,

Then
xer(A) = Y (= 1) c(R(GT)A))
n=0
= Y (=1 ¥ cl(EL" )
n=0 p=0
i (= 1" cl(E")
On the other hand,
xr(4) = Y (= 1) cl(RUT(A))

q=0

and so

2e © xr(A) = ZO(— Dx6(R*T(4))

@

S (—1)0 Y (= 1y l(RPG(RIT(A))

q=0 p=0

n

OZO:O( -1) ZOCI(RFG(R" “PT(A))

Il

I

Y (= 1)" cl(EY).
n=0

Since E, , , is the homology of E,, we get

e8]

ZO(—I)" cl(ED) = Z(—l)" c(En) = - Z —1)" cl(E™).

This concludes the proof of the theorem.
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EXERCISES

1. Prove that the example of the standard complex given in §1 is actually a complex,
and is exact, so it gives a resolution of Z. [Hint: To show that the sequence of the
standard complex is exact, choose an element z € S and define 4 : E'— E'*! by letting

h(xg, ...y X)) = (2, Xg5 - - - » Xi).

Prove that dh + hd = id, and that dd = 0. Exactness follows at once.]

Cohomology of groups

2. Let G be a group. Use G as the set S in the standard complex. Define an action of
G on the standard complex E by letting

X(xgy o ooy X)) = (Xxgy .-y XX;).

Prove that each E; is a free module over the group ring Z[G]. Thus if we let
R = Z[G] be the group ring, and consider the category Mod(G) of G-modules, then
the standard complex gives a free resolution of Z in this category.

3. The standard complex E was written in homogeneous form, so the boundary maps
have a certain symmetry. There is another complex which exhibits useful features
as follows. Let F' be the free Z[G]-module having for basis i-tuples (rather than
(i + 1)-tuples) (x;, ..., x;). For i = 0 we take F, = Z[G] itself. Define the boundary
operator by the formula

i1 )
dlxi, ..., x) = x1(x2, ..o x) + (=1 (x1, .o XX, -, %)
j=1
+ (=D xy, . x).

Show that E = F (as complexes of G-modules) via the association
Xy, - x> (L, X, XX, L XXy XY,

and that the operator d given for F corresponds to the operator d given for E under
this isomorphism.

4. If A is a G-module, let AC be the submodule consisting of all elements v € A such
that xv = v for all x € G. Thus A€ has trivial G-action. (This notation is convenient,
but is not the same as for the induced module of Chapter XVIII.)

(a) Show that if H%(G, A) denotes the g-th homology of the complex
Homg(E, A), then H%G, A) = A®. Thus the left derived functors of A > A
are the homology groups of the complex Homg(E, A), or for that matter,
of the complex Hom(F, A), where F is as in Exercise 3.

(b) Show that the group of 1-cycles Z(G, A) consists of those functions
f: G — A satisfying

fx) + xf(y) = f(xy) forall x, y € G.

Show that the subgroup of coboundaries B'(G, A) consists of those functions
ffor which there exists an element a € A such that f(x) = xa — a. The factor
group is then H'(G, A). See Chapter VI, §10 for the determination of a special
case.
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(c) Show that the group of 2-cocycles ZX(G, A) consists of those functions
f: G — A satisfying

(@, 2) — fly, 2) + fx, y2) = fx, y) = 0.
Such 2-cocycles are also called factor sets, and they can be used to describe
isomorphism classes of group extensions, as follows.

5. Group extensions. Let W be a group and A a normal subgroup, written multipli-
catively. Let G = W/A be the factor group. Let F: G — W be a choice of coset
representatives. Define

fx, y) = FO)F(y)F(xy)~L.

(a) Prove that fis A-valued, and that f: G X G — A is a 2-cocycle.
(b) Given a group G and an abelian group A, we view an extension W as an
exact sequence

l>A—->W—>G— 1.
Show that if two such extensions are isomorphic then the 2-cocycles associated
to these extensions as in (a) define the same class in H(G, A).

(c) Prove that the map which we obtained above from isomorphism classes of
group extensions to HX(G, A) is a bijection.

6. Morphisms of the cohomology functor. Let A : G' — G be a group homomorphism.
Then A gives rise to an exact functor

q))\ . MOd(G) g MOd(G,)’

because every G-module can be viewed as a G'-module by defining the operation of
o' € G' to be a'a = A(c")a. Thus we obtain a cohomology functor H% o ®,,
Let G' be a subgroup of G. In dimension 0, we have a morphism of functors

A* :HY — H2. o ®, given by the inclusion A <> AS" = ®,(A)C".
(a) Show that there is a unique morphism of 8-functors
A Hs— Hg o,

which has the above effect on H%. We have the following important special
cases.

Restriction. Let H be a subgroup of G. Let A be a G-module. A function
from G into A restricts to a function from H into A. In this way, we get a
natural homomorphism called the restriction

res: HY(G, A) > HY(H, A).

Inflation. Suppose that H is normal in G. Let A¥ be the subgroup of A
consisting of those elements fixed by H. Then it is immediately verified that
A" is stable under G, and so is a G/H-module. The inclusion A¥ <5 A induces
a homomorphism

Hi(u) = U, : HYG, AH) — Hi(A).
Define the inflation

infH,, : H(G/H, A") — HY(G, A)
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as the composite of the functorial morphism HY(G/H, A¥) — HY(G, AY)
followed by the induced homomerphism u, = H%(u) as above.
In dimension 0, the inflation gives the identity (A¥)G/H = AG,
(b) Show that the inflation can be expressed on the standard cochain complex
by the natural map which to a function of G/H in A" associates a function
of G into A# C A.
(c) Prove that the following sequence is exact.
0— H'G/H, A% B H'(G, &S H'\#H, A).
(d) Describe how one gets an operation of G on the cohomology functor H; “by
conjugation” and functoriality.
(e) In (c), show that the image of restriction on the right actually lies in
H'(H, A)C (the fixed subgroup under G).
Remark. There is an analogous result for higher cohomology groups,
whose proof needs a spectral sequence of Hochschild-Serre. See [La 96],
Chapter VI, §2, Theorem 2. It is actually this version for H? which is applied
to H(G, K*), when K is a Galois extension, and is used in class field theory
[ArT 67].

7. Let G be a group, B an abelian group and M;(B) = M(G, B) the set of mappings
from G into B. For x € G and f € M(G, B) define ([x]f)(y) = f(yx).
(a) Show that B > M(B) is a covariant, additive, exact functor from Mod(Z)
(category of abelian groups) into Mod(G).

(b) Let G’ be a subgroup of G and G = ijG’ a coset decomposition. For
f € M(G, B) let f; be the function in M(G', B) such that f,(y) = f(x;y).
Show that the map

f Hf
is a G'-isomorphism from M(G, B) to n M(G’, B).
J

8. For each G-module A € Mod(G), define ¢,: A — M(G, A) by the condition
g4(a) = the function f, such that f,(0) = oa for 0 € G. Show that a +— f, is a
G-module embedding, and that the exact sequence

0—> A3 MG, A) = X, = coker g, — 0
splits over Z. (In fact, the map f > f(e) splits the left side arrow.)
9. Let B € Mod(Z). Let H? be the left derived functor of A > AC.
(a) Show that HY(G, M;(B)) = 0 for all ¢ > 0. [Hint: use a contracting homotopy
5:C"(G, MgB)) > C"7 (G, Mc(B) by (s, = frapx, (1.

Show that f = sdf + dsf.] Thus M erases the cohomology functor.
(b) Also show that for all subgroups G’ of G one has H4(G', My(B)) = 0 for
q>0.
10. Let G be a group and S a subgroup. Show that the bifunctors
(A, B) > Homg(A, M%(B)) and (A, B) > Homg(A, B)
on Mod(G) X Mod(S) with value in Mod(Z) are isomorphic. The isomorphism is
given by the maps
¢ g (a d ga)’ for (4 € HomS(As B)’ Where ga(o-) = ‘P(Ua)’ ga € Mg(B)
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The inverse mapping is given by
/' f(1) with f € Homg(A, ME(B)).

Recall that MZ (B) was defined in Chapter XVIII, §7 for the induced representation.
Basically you should already know the above isomorphism.

11. Let G be a group and S a subgroup. Show that the map
HY(G, M%(B)) — H4(S, B) for B € Mod(S),

obtained by composing the restriction res§ with the S-homomorphism f > f(1), is
an isomorphism for ¢ > 0. [Hint: Use the uniqueness theorem for cohomology
functors.]

12. Let G be a group. Let € : Z[G] — Z be the homomorphism such that 8(2 n(x)x) =
> n(x). Let I; be its kernel. Prove that I; is an ideal of Z[G] and that there is an
isomorphism of functors (on the category of groups)

G/G =I5/ 1%, by xG (x — 1) + IZ.

13. LetA € Mod(G) and @ € H'(G, A). Let{a(x)},. be a standard 1-cocycle representing
a. Show that there exists a G-homomorphism f: I; — A such that f(x — 1) = a(x),
so f € (Hom(/;, A))®. Show that the sequence

0— A = Hom(Z, A) - Hom(Z[G], A) — Hom(/;, A) — 0

is exact, and that if & is the coboundary for the cohomology sequence, then

o(f) = —a.

Finite groups

We now turn to the case of finite groups G. For such groups and a G-module A we
have the trace

To:A— A definedby  Tga) = 2. oa.

oeG

We define a module A to be G-regular if there exists a Z-endomorphism u : A — A such
that id, = T;(u). Recall that the operation of G on End(A) is given by

(o]l f(a) = of(c™la) for o € G.

14. (a) Show that a projective object in Mod(G) is G-regular.
(b) Let R be a commutative ring and let A be in Modg(G) (the category of (G, R)-
modules). Show that A is R[G]-projective if and only if A is R-projective and
R[G]-regular, meaning that id, = T;(u) for some R-homomorphism u : A — A.

15. Consider the exact sequences:
) 0—>1;—>ZG]>Z—0
) 0->Z5Z[Gl— J,— 0
where the first one defines /;, and the second is defined by the embedding
€' 1 Z — Z[G] such that £'(n) = n(z 0'),

i.e. on the “diagonal”. The cokernel of &' is J; by definition.

(a) Prove that both sequences (1) and (2) split in Mod(G).
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16.

17.

18.

(b) Define M(A) = Z[G] ® A (tensor product over Z) for A € Mod(G). Show
that M(A) is G-regular, and that one gets exact sequences (1,) and (2,) by
tensoring (1) and (2) with A. As a result one gets an embedding

e, = ®id:A=ZQA—> Z[G]l QA.

Cyclic groups. Let G be a finite cyclic group of order n. Let o be a generator of G.
Let Ki = Z[G] fori > 0. Let £ : K —> Z be the augmentation as before. For i odd
=1, let d' : K* - K'"! be multiplication by 1 — . For i even = 2, let d’ be
multiplication by 1 + o + - -+ + ¢"~!. Prove that X is a resolution of Z. Conclude
that:

For i odd: H(G, A) = AC/T;A where Tg:ab> (1 + o+ -+ + 0" Da;

For i even = 2: H(G, A) = A;/(1 — o)A, where Ay is the kernel of T in A.
Let G be a finite group. Show that there exists a é-functor H from Mod(G) to
Mod (Z) such that:

(1) H° is (isomorphic to) the functor A > A%/T;A.

(2) H4(A) = 0 if A is injective and g > 0, and H9(A) = 0 if A is projective and ¢
is arbitrary.

(3) H is erased by G-regular modules. In particular, H is erased by M.
The 8-functor of Exercise 17 is called the special cohomology functor. It differs
from the other one only in dimension 0.

Let H = H;; be the special cohomology functor for a finite group G. Show that:
H°(;) = 0, H'Z) = H!(I) = Z/nZ where n = #(G);
H(Q/Z) = H'(Z) = H*(I) = 0
HY(Q/Z) =~ H¥Z) = H3*(I) = G" = Hom(G, Q/Z) by definition.

Injectives

19. (a) Show that if an abelian group T is injective in the category of abelian groups, then

20.

21.

22.

23.

it is divisible.

(b) Let A4 bea principal entire ring. Define the notion of divisibility by elements of 4 for
modules in a manner analogous to that for abelian groups. Show that an A-
module is injective if and only if it is A-divisible. [The proof for Z should work
in exactly the same way.}

Let S be a multiplicative subset of the commutative Noetherian ring A. If / is an
injective A-module, show that ™'/ is an injective ™! A-module.

(a) Show that a direct sum of projective modules is projective.
(b) Show that a direct product of injective modules is injective.

Show that a factor module, direct summand, direct product, and direct sum of divisible
modules are divisible.

Let Q be a module over a commutative ring A. Assume that for every left ideal J of
A, every homomorphism ¢ : J — @ can be extended to a homomorphism of A into
Q. Show that Q is injective. [Hint: Given M' C M and f: M' — Q, let x, € M
and x, & M'. Let J be the left ideal of elements @ € A such that ax, € M'. Let
¢(a) = f(axy) and extend ¢ to A, as can be done by hypothesis. Then show that
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one can extend f to M by the formula

J&' + bxg) = f(x') + @(b),
forx’ € M and b € A. Then use Zorn’s lemma. This is the same pattern of proof as
the proof of Lemma 4.2.]
24. Let

0-1,-1,-1;-0

be an exact sequence of modules. Assume that I, I, are injective.
(a) Show that the sequence splits.
(b) Show that I, is injective.
(c) If I is injective and I = M @ N, show that M is injective.

25. (Do this exercise after you have read about Noetherian rings.) Let 4 be a Noetherian
commutative ring, and let Q be an injective A-module. Let a be an ideal of A4, and let
0 be the subset of elements x € Q such that a"x = 0 for some n, depending on x.
Show that Q) is injective. [Hint: Use Exercise 23.]

26. Let A be a commutative ring. Let E be an A-module, and let E* = Homg(E, Q/Z)
be the dual module. Prove the following statements.

(a) A sequence
0-N->-M->E-O0
is exact if and only if the dual sequence
0—>Er>M'>N'—0

is exact.
(b) Let F be flat and I injective in the category of A-modules. Show that
Hom,(F, I) is injective.
(¢) E is flat if and only if E* is injective.
27. Extensions of modules. Let M, N be modules over a ring. By an extension of M
by N we mean an exact sequence

(&) 0O->N—-E—->M-—O0.

We shall now define a map from such extensions to Ext!(M, N). Let P be projective,
with a surjective homomorphism onto M, so we get an exact sequence

(**) 0>KS>P5HM—0

where K is defined to be the kernel. Since P is projective, there exists a homomorphism
u: P — E, and depending on u a unique homomorphism v: K — N making the
diagram commutative:

00— K — P — M —70
vl uJ idl
0 > N > E M >0
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28.

On the other hand, we have the exact sequence
(***) 0 — Hom(M, N) — Hom(P, N) - Hom(K, N) — Ext'(M, N) — 0,

with the last term on the right being equal to 0 because Ext!(P, N) = 0. To the
extension (*) we associate the image of v in Ext!(M, N).

Prove that this association is a bijection between isomorphism classes of extensions
(i.e. isomorphism classes of exact sequences as in (*)), and Ext'(M, N). [Hint:
Construct an inverse as follows. Given an element ¢ of Ext!(M, N), using an exact
sequence (**), there is some element v € Hom(K, N) which maps on e in (***). Let
E be the push-out of v and w. In other words, let J be the submodule of N @ P
consisting of all elements (v(x), —w(x)) with x € K, and let E = (N & P)/J. Show
that the map y > (y, 0) mod J gives an injection of N into E. Show that the map
N @ P — M vanishes on J, and so gives a surjective homomorphism E — M — 0.
Thus we obtain an exact sequence (*); that is, an extension of M by N. Thus to each
element of Ext!(M, N) we have associated an isomorphism class of extensions of M
by N. Show that the maps we have defined are inverse to each other between iso-
morphism classes of extensions and elements of Ext!(M, N).]

Let R be a principal entire ring. Let a € R. For every R-module N, prove:
(a) Ext!(R/aR, N) = N/aN.
(b) For b € R we have Ext!(R/aR, R/bR) = R/(a, b), where (a, b) is the g.c.d
of a and b, assuming ab # 0.

Tensor product of complexes.

29.

30.

Let K = @K, and L = @ L, be two complexes indexed by the integers, and with
boundary maps lower indices by 1. Define K ® L to be the direct sum of the modules
(K ® L),, where

K®L,= @ K,®L,.

pta=n
Show that there exist unique homomorphisms
d=d,:(K®L),»>(K® L),
such that
dx®y) =dx)® y + (—1)’x ® d(y).
Show that K ® L with these homomorphisms is a complex, thatisd o d = 0.

Let K, L be double complexes. We write K;. and L;. for the ordinary column complexes
of K and L respectively. Let ¢: K — L be a homomorphism of double complexes.
Assume that each homomorphism

¢ K. —> L,

is a homology isomorphism.
(a) Prove that Tot(¢): Tot(K) — Tot(L) is a homology isomorphism. (If you
want to see this worked out, cf. [FuL 85], Chapter V, Lemma 5.4.)
(b) Prove Theorem 9.8 using (a) instead of spectral sequences.
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CHAPTER XXI

Finite Free Resolutions

This chapter puts together specific computations of complexes and homology.
Partly these provide examples for the general theory of Chapter XX, and partly
they provide concrete results which have occupied algebraists for a century.
They have one aspect in common: the computation of homology is done by means
of a finite free resolution, i.e. a finite complex whose modules are finite free.

The first section shows a general technique (the mapping cylinder) whereby
the homology arising from some complex can be computed by using another
complex which is finite free. One application of such complexes has already
been given in Chapter X, putting together Proposition 4.5 followed by Exercises
10—15 of that chapter.

Then we go to major theorems, going from Hilbert’s Syzygy theorem, from
a century ago, to Serre’s theorem about finite free resolutions of modules over
polynomial rings, and the Quillen-Suslin theorem. We also include a discussion
of certain finite free resolutions obtained from the Koszul complex. These apply,
among other things, to the Grothendieck Riemann-Roch theorem of algebraic
geometry.

Bibliographical references refer to the list given at the end of Chapter XX.

§1. SPECIAL COMPLEXES

As in the preceding chapter, we work with the category of modules over a
ring, but the reader will notice that the arguments hold quite generally in an
abelian category.

In some applications one determines homology from a complex which is
not suitable for other types of construction, like changing the base ring. In this
section, we give a general procedure which constructs another complex with
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better properties than the first one, while giving the same homology. For an
application to Noetherian modules, see Exercises 12—15 of Chapter X.

Let f: K — C be a morphism of complexes. We say that f is a homology
isomorphism if the natural map

H(f): H(K) - H(C)

is an isomorphism. The definition is valid in an abelian category, but the reader
may think of modules over a ring, or abelian groups even. A family & of objects
will be called sufficient if given an object E there exists an element F in § and
an epimorphism
F - E -0,

and if § is closed under taking finite direct sums. For instance, we may use for
& the family of free modules. However, in important applications, we shall deal
with finitely generated modules, in which case & might be taken as the family of

finite free modules. These are in fact the applications I have in mind, which
resulted in having axiomatized the situation.

Proposition 1.1. Let C be a complex such that HP(C) # 0 only for
O0<p<n Let § be a sufficient family of projectives. There exists a
complex

0-K°>K'-»...5K">0

such that:
K?#0 onlyfor 0<p<=<n;

KPisin& forallp = 1;
and there exists a homomorphism of complexes
fiK->C
which is a homology isomorphism.

Proof. We define f,, by descending induction on m:

+ sR*! m+2
K" — KM+ > Kmt: ——
Sm Sm+1 Sm+2
+
cr *Cm+1 sy cn 2_

We suppose that we have defined a morphism of complexes with p = m + 1
such that HP(f) is an isomorphism for p = m + 2, and

Jmr1 1 Z"HK) — H™TH(O)
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is an epimorphism, where Z denotes the cycles, that is Ker 6. We wish to con-
struct K™ and f,,, thus propagating to the left. First let m > 0. Let B™*! be
the kernel of

Ker 2+ - H™ (C).
Let K' be in § with an epimorphism
§':K' — B™"*1,
Let K" - H™(C) be an epimorphism with K” in §, and let
f":K"—> Z"(C)
be any lifting, which exists since K" is projective. Let
K"=K @ K"
and define ™ : K™ — K™* ! to be &’ on K’ and 0 on K”. Then
Jmr120(K') < 6c(Cp),
and hence there exists f': K’ - C™ such that
Scof = fur1 6.

We now define f,,: K™ - C" to be /' on K’ and f” on K". Then we have
defined a morphism of complexes truncated down to m as desired.
Finally, if m = —1, we have constructed down to K°, 6° and f, with

K°S HY(C) -0
exact. The last square looks like this, defining K~! = 0.

=10

0 K @®K" dK < K!
f’\/f” lﬂ
0 C° C!

We replace K° by K°/(Ker 6° n Ker f,). Then H°(f) becomes an isomorphism,
thus proving the proposition.

We want to say something more about K°. For this purpose, we define a
new concept. Let § be a family of objects in the given abelian category (think
of modules in first reading). We shall say that & is complete if it is sufficient, and
for any exact sequence

O0-F->F->F 50
with F” and F in & then F' is also in .
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Example. In Chapter XVI, Theorem 3.4 we proved that the family of finite
flat modules in the category of finite modules over a Noetherian ring is complete.
Similarly, the family of flat modules in the category of modules over a ring is
complete. We cannot get away with just projectives or free modules, because
in the statement of the proposition, K° is not necessarily free but we want to
include it in the family as having especially nice properties. In practice, the
family consists of the flat modules, or finite flat modules. Cf. Chaper X, Theorem
4.4, and Chapter XVI, Theorem 3.8.

Proposition 1.2. Let f: K — C be a morphism of complexes, such that K?,
HP(C)are #0onlyforp = 1,...,n. Let § be a complete family, and assume
that K?, CP are in § for all p, except possibly for K°. If f is a homology
isomorphism, then K° is also in §.

Before giving the proof, we define a new complex called the mapping cylinder
of an arbitrary morphism of complexes f by letting

M? = KP @ CP!
and defining J,,: M? - M?*! by
om(x, y) = (0x, fx — dy).

It is trivially verified that M is then a complex, i.e. 5 o4 = 0. If C' is the com-
plex obtained from C by shifting degrees by one (and making a sign change
in 8.), so C'’? = CP™!, then we get an exact sequence of complexes

0-C->M->K-0

and hence the mapping cylinder exact cohomology sequence

H?(K)

Hv; {C)—— H"* (M) —— HP*(K) ———+H”+;(C’)

HP(C) H?*Y(C)

and one sees from the definitions that the cohomology maps
H?(K) - H?*1(C) ~ H?(C)

are the ones induced by f: K — C.
We now return to the assumptions of Proposition 1.2, so that these maps are
isomorphisms. We conclude that H(M) = 0. This implies that the sequence

0—>K0->M1—>M2—>"'-—>M"+1—’0

is exact. Now each M” is in § by assumption. Inserting the kernels and
cokernels at each step and using induction together with the definition of a
complete family, we conclude that K° is in &, as was to be shown.
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In the next proposition, we have axiomatized the situation so that it is
applicable to the tensor product, discussed later, and to the case when the family
& consists of flat modules, as defined in Chapter XVI. No knowledge of this
chapter is needed here, however, since the axiomatization uses just the general
language of functors and exactness.

Let & be a complete family again, and let T be a covariant additive functor
on the given category. We say that & is exact for T if given an exact sequence

0-F>F->F' -0
in &, then
0-T(F)>TF)->TEFE")-0

1s exact.

Proposition 1.3. Let § be a complete family which is exact for T. Let
f:K — C be a morphism of complexes, such that K? and C? are in § for all
p, and K?, HP(C) are zero for all but a finite number of p. Assume that f is a
homology isomorphism. Then

T(f): T(K) - T(C)
is a homology isomorphism.

Proof. Construct the mapping cylinder M for f. As in the proof of Propo-
sition 1.2, we get H(M) = 0 so M is exact. We then start inductively from the
right with zeros. We let Z? be the cycles in M? and use the short exact sequences

0-2ZP 5> MP > ZF'1 50

together with the definition of a complete family to conclude that Z? is in § for
all p. Hence the short sequences obtained by applying T are exact. But T(M)
is the mapping cylinder of the morphism

T(f): T(K) - T(C),

which is therefore an isomorphism, as one sees from the homology sequence of
the mapping cylinder. This concludes the proof.

§2. FINITE FREE RESOLUTIONS

The first part of this section develops the notion of resolutions for a case
somewhat more subtle than projective resolutions, and gives a good example for
the considerations of Chapter XX. Northcott in [No 76] pointed out that minor
adjustments of standard proofs also applied to the non-Noetherian rings, only
occasionally slightly less tractable than the Noetherian ones.
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Let A be a ring. A module E is called stably free if there exists a finite free
module F such that E @ F is finite free, and thus isomorphic to A™ for some
positive integer n. In particular, E is projective and finitely generated.

We say that a module M has a finite free resolution if there exists a resolution

O0—-E,»----E,->M->0

such that each E, is finite free.

Theorem 2.1. Let M be a projective module. Then M is stably free if and
only if M admits a finite free resolution.

Proof. If M is stably free then it is trivial that M has a finite free resolution.
Conversely assume the existence of the resolution with the above notation.
We prove that M is stably free by induction on n. The assertion is obvious if
n=0. Assume n = 1. Insert the kernels and cokernels at each step, in the
manner of dimension shifting. Say

M, = Ker(E, - P),
giving rise to the exact sequence

0-M -E;, - M-

Since M is projective, this sequence splits, and E, * M @ M,. But M, hasa
finite free resolution of length smaller than the resolution of M, so there exists
a finite free module F such that M, @ F is free. Since E, @ F is also free, this
concludes the proof of the theorem.

A resolution
0-E,—»--->Ey,-M->0

is called stably free if all the modules E; (i = 0, ..., n) are stably free.

Proposition 2.2. Let M be an A-module. Then M has a finite free resolution
of length n = 1 if and only if M has a stably free resolution of length n.

Proof. One direction is trivial, so we suppose given a stably free resolution
with the above notation. Let 0 £i < n be some integer, and let F;, F,,, be
finite free such that E;@® F; and E;,, ® F;,, are free. Let F=F, ® F,,,.
Then we can form an exact sequence

0-E,-» - ->E, ®F->E®F—>---5E;,-M->0

in the obvious manner. In this way, we have changed two consecutive modules
in the resolution to make them free. Proceeding by induction, we can then
make E,, E, free, then E,, E, free, and so on to conclude the proof of the
proposition.
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The next lemma is designed to facilitate dimension shifting.
We say that two modules M,, M, are stably isomorphic if there exist finite
free modules F,, F,suchthat M, @ F, * M, ® F,.

Lemma 2.3. Let M, be stably isomorphic to M,. Let
0-N, —-E ->M -0
0-N,-E,->M,-0

be exact sequences, where M, is stably isomorphic to M,, and E,, E, are
stably free. Then N, is stably isomorphic to N,.

Proof. By definition, there is an isomorphism M, @ F, * M, @ F,.
We have exact sequences

0O-N,-E ®F -M ®F, -0
0-N,-E,®F,>M,®F,->0
By Schanuel’s lemma (see below) we conclude that
N®E,®F,=~xN,®E, ®@F,.

Since E,, E,, F,, F, are stably free, we can add finite free modules to each side
so that the summands of N, and N, become free, and by adding 1-dimensional
free modules if necessary, we can preserve the isomorphism, which proves that
N, is stably isomorphic to N,.

We still have to take care of Schanuel’s lemma:
Lemma 2.4. Let
0-K—->P-M->0
0-K'>P->M->0
be exact sequences where P, P’ are projective. Then there is an isomorphism

K@eP~K@®P.

Proof. Since P is projective, there exists a homomorphism P — P’ making
the right square in the following diagram commute.

0 SK——>p M——0

T

0—— K ——P M 0

u
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Then one can find a homomorphism K — K’ which makes the left square
commute. Then we get an exact sequence

0-K->P®K -P -0

by x - (ix, ux) for x € K and (y, z) > wy — jz. We leave the verification of
exactness to the reader. Since P’ is projective, the sequence splits thus proving
Schanuel’s lemma. This also concludes the proof of Lemma 2.3.

The minimal length of a stably free resolution of a module is called its
stably free dimension. To construct a stably free resolution of a finite module,
we proceed inductively. The preceding lemmas allow us to carry out the induc-
tion, and also to stop the construction if a module is of finite stably free dimen-
sion.

Theorem 2.5. Let M be a module which admits a stably free resolution of
length n

0-E, - - --oE;->-M-0
Let
F,-» - -2 F,-M-0

m

be an exact sequence with F; stably free fori = 0,...,m.
(1) If m < n — 1 then there exists a stably free F,,,, such that the exact
sequence can be continued exactly to

Foy,—» > Fy—->M->0.

(i) If m=n-—1, let F,=Ker(F,_, > F,_,). Then F, is stably free
and thus

O-F,»F,_,—-»-->F,-M->0
is a stably free resolution.

Remark. If 4 is Noetherian then of course (i) is trivial, and we can even
pick F, ., to be finite free.

Proof. Insert the kernels and cokernels in each sequence, say
K, =Ker(E,—>E,_,) if m#0
K, = Ker(E, - M),
and define K, similarly. By Lemma 2.3, K, is stably isomorphic to X,,, say
K, ®F~K,®F

with F, F' finite free.
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If m < n — 1, then K,, is a homomorphic image of E,,, ,; so both K,, @ F
and K, @ F' are homomorphic images of E,,, ; @ F. Therefore K/, is a homo-
morphic image of E,,, ; @ F which is stably free. WeletF, ., =E, ., ® Fto
conclude the proof in this case.

If m = n — 1, then we can take K, = E,. Hence K,, @ F is stably free, and
sois K,, ® F’ by the isomorphism in the first part of the proof. It follows trivially
that K, is stably free, and by definition, K;, = F,,, , in this case. This concludes
the proof of the theorem.

Corollary 2.6. If 0—> M, — E— M — Qs exact, M has stably free dimen-
sion = n, and E is stably free, then M, has stably free dimension = n — 1.

Theorem 2.7. Let
0O->M->M->M -0

be an exact sequence. If any two of these modules have a finite free resolution,
then so does the third.

Proof. Assume M' and M have finite free resolutions. Since M is finite, it
follows that M" is also finite. By essentially the same construction as Chapter
XX, Lemma 3.8, we can construct an exact and commutative diagram where
E', E, E" are stably free:

0 0 0
l v
0 "M, "M, > M 0
Jv N
0 E E— E 0
0 M M M 0
J ~
0 0 0

We then argue by induction on the stably free dimension of M. We see
that M, has stably free dimension < n — 1 (actually n — 1, but we don’t care),
and M has finite stably free dimension. By induction we are reduced to the
case when M has stably free dimension 0, which means that M is stably free.
Since by assumption there is a finite free resolution of M’, it follows that M”
also has a finite free resolution, thus concluding the proof of the first assertion.
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Next assume that M’, M” have finite free resolutions. Then M is finite.
If both M’ and M” have stably free dimension 0, then M’', M"” are projective
and M =~ M' @ M" is also stably free and we are done. We now argue by
induction on the maximum of their stably free dimension n, and we assume
n = 1. We can construct an exact and commutative diagram as in the previous
case with E', E, E” finite free (we leave the details to the reader). But the maxi-
mum of the stably free dimensions of M and M/ is at most n — 1, and so by
induction it follows that M, has finite stably free dimension. This concludes the
proof of the second case.

Observe that the third statement has been proved in Chapter XX, Lemma 3.8
when A is Noetherian, taking for @ the abelian category of finite modules, and
for € the family of stably free modules. Mitchell Stokes pointed out to me that
the statement is valid in general without Noetherian assumption, and can be
proved as follows. We assume that M, M" have finite free resolutions. We first
show that M’ is finitely generated. Indeed, suppose first that M is finite free. We
have two exact sequences

0->M—->M->M—>0
OéK”_)FH_)MHAO

where F” is finite free, and K" is finitely generated because of the assumption
that M"” has a finite free resolution. That M’ is finitely generated follows from
Schanuel’s lemma. If M is not free, one can reduce the finite generation of M’
to the case when M is free by a pull-back, which we leave to the reader.

Now suppose that the stably free dimension of M" is positive. We use the
same exact commutative diagram as in the previous cases, with E’, E, E” finite
free. The stably free dimension of M is one less than that of M", and we are
done by induction. This concludes the proof of Theorem 2.7.

This also concludes our general discussion of finite free resolutions. For
more information cf. Northcott’s book on the subject.

We now come to the second part of this section, which provides an applica-
tion to polynomial rings.

Theorem 2.8. Let R be a commutative Noetherian ring. Let x be a variable.
If every finite R-module has a finite free resolution, then every finite R[x]-module
has a finite free resolution.

In other words, in the category of finite R-modules, if every object is of
finite stably free dimension, then the same property applies to the category of
finite R[x]-modules. Before proving the theorem, we state the application we
have in mind.

Theorem 2.9. (Serre). If k is a field and x,, . . ., x, independent vari-
ables, then every finite projective module over kl[x,, . . ., x,] is stably free, or
equivalently admits a finite free resolution.
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Proof. By induction and Theorem 2.8 we conclude that every finite module
over k[xy, ..., x,] is of finite stably free dimension. (We are using Theorem
2.1.) This concludes the proof.

The rest of this section is devoted to the proof of Theorem 2.8.
Let M be a finite R[x]-module. By Chapter X, Corollary 2.8, M has a finite
filtration

M=MyoM,>..-oM, =0

such that each factor M;/M,,  is isomorphic to R[x]/P; for some prime P,.
In light of Theorem 2.7, it suffices to prove the theorem in case M = R[x]/P
where P is prime, which we now assume. In light of the exact sequence

0-P-> R[X] — R[x]/P - 0.

and Theorem 2.7, we note that M has a finite free resolution if and only if P
does.

Let p = P n R. Then p is prime in R. Suppose there is some M = R[x]/P
which does not admit a finite free resolution. Among all such M we select one for
which the intersection p is maximal in the family of prime ideals obtained as
above. This is possible in light of one of the basic properties characterizing
Noetherian rings.

Let Ry, = R/p so R is entire. Let P, = P/pR[x]. Then we may view M
as an Ry[x]-module, equal to Ry/P,. Letf;, ..., f, be a finite set of generators
for Py, and let f be a polynomial of minimal degree in P,. Let K, be the
quotient field of Ry. By the euclidean algorithm, we can write

fi=q;f+r for i=1,...,n

with g;, r, € Ko[x] and deg r; < deg f. Let d, be a common denominator for
the coefficients of all g;, r;. Then d, # 0 and

dofi=aif + i

where q; = dyq; and r; = dyr; lie in Ry[x]. Since deg f is minimal in P, it
follows that r; = 0 for all i, so

do Py = Ro[x]f = (f).

Let Ny = Py/(f), so N, is a module over Ry[x], and we can also view N,
as a module over R[x]. When so viewed, we denote N, by N. Letd € R be any
element reducing to d, mod p. Then d ¢ p since d, # 0. The module N, has
a finite filtration such that each factor module of the filtration is isomorphic to
some Ry[x]/Q, where Q, is an associated prime of N,. Let Q be the inverse
image of Q, in R[x]. These prime ideals Q are precisely the associated primes
of N in R[x]. Since d, kills N it follows that d kills N and therefore d lies in
every associated prime of N. By the maximality property in the selection of P,
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it follows that every one of the factor modules in the filtration of N has a finite
free resolution, and by Theorem 2.7 it follows that N itself has a finite free
resolution.

Now we view Ry[x] as an R[x]-module, via the canonical homomorphism

R[x] - Ro[x] = R[x]/pR[x].
By assumption, p has a finite free resolution as R-module, say

0-E,»--->E;->p—-0.

Then we may simply form the modules E;[x] in the obvious sense to obtain a
finite free resolution of p[x] = pR[x]. From the exact sequence

0 - pR[x] - R[x] » Ry[x] -0

we conclude that R,[x] has a finite free resolution as R[x]-module.

Since R, is entire, it follows that the principal ideal (f) in Ry[x] is R[x]-
isomorphic to Ry[x], and therefore has a finite free resolution as R[x]-module.
Theorem 2.7 applied to the exact sequence of R[x]-modules

0->(f)»P,>N->0

shows that P, has a finite free resolution; and further applied to the exact
sequence
0> pR[x]>P->P,—-0

shows that P has a finite free resolution, thereby concluding the proof of
Theorem 2.8.

§3. UNIMODULAR POLYNOMIAL VECTORS

Let A be a commutative ring. Let (f, ..., f,) be elements of A generating
the unit ideal. We call such elements unimodular. We shall say that they have
the unimodular extension property if there exists a matrix in GL,(A) with first
column (f}, ..., f,). If Ais a principal entire ring, then it is a trivial exercise to
prove that this is always the case. Serre originally asked the question whether
it is true for a polynomial ring k[x,, ..., x,] over a field k. The problem was
solved by Quillen and Suslin. We give here a simplification of Suslin’s proof by
Vaserstein, also using a previous result of Horrocks. The method is by induc-
tion on the number of variables, in some fashion.

We shall write f = (f;, ..., f,) for the column vector. We first remark
that f has the unimodular extension property if and only if the vector obtained
by a permutation of its components has this property. Similarly, we can make
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the usual row operations, adding a multiple gf; to f; (j # i), and f has the uni-
modular extension property if and only if any one of its transforms by row
operations has the unimodular extension property.

We first prove the theorem in a context which allows the induction.

Theorem 3.1. (Horrocks). Let (0, m) be a local ring and let A = o[x]
be the polynomial ring in one variable over v. Let f be a unimodular vector
in A™ such that some component has leading coefficient 1. Then f has the
unimodular extension property.

Proof. (Suslin). If n = 1 or 2 then the theorem is obvious even without
assuming that o is local. So we assume n = 3 and do an induction of the
smallest degree d of a component of f with leading coefficient 1. First we note
that by the Euclidean algorithm and row operations, we may assume that f;
has leading coefficient 1, degree d, and that deg f; < d for j # 1. Since f is
unimodular, a relation ) g, f; = 1 shows that not all coefficients of f,, ..., f,
can lie in the maximal ideal m. Without loss of generality, we may assume that
some coeflicient of f, does not lie in m and so is a unit since o is local. Write

fl(x) = Xd + ad_lxd-I + s + ao With ai € 0,

frlx) = bx*+ -+ b, with ben,s<d—1,

so that some b; is a unit. Let a be the ideal generated by all leading coefficients
of polynomials g, f; + g, f, of degree < d — 1. Then a contains all the co-
efficients b;, i = 0, ..., s. One sees this by descending induction, starting with
b, which is obvious, and then using a linear combination

X7 f3(x) = b fi(x).

Therefore a is the unit ideal, and there exists a polynomial g, f; + g, f> of
degree < d — | and leading coefficient 1. By row operations, we may now get
a polynomial of degree < d — 1 and leading coefficient 1 as some component
in the i-th place for some i # 1, 2. Thus ultimately, by induction, we may
assume that d = 0 in which case the theorem is obvious. This concludes the
proof.

Over any commutative ring A, for two column vectors f, g we write f ~ g
over A to mean that there exists M € GL,(A) such that

/= Mg,

and we say that fis equivalent to g over A. Horrocks’ theorem states that a
unimodular vector f with one component having leading coefficient 1 is o[x]-
equivalent to the first unit vector e!. We are interested in getting a similar
descent over non-local rings. We can write f = f(x), and there is a natural
“constant” vector f(0) formed with the constant coefficients. As a corollary of
Horrocks’ theorem, we get:
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Corollary 3.2. Let o be a local ring. Let f be a unimodular vector in
o[x]" such that some component has leading coefficient 1. Then f ~ f(0)
over o[ x].

Proof. Note that f(0) € 0™ has one component which is a unit. It suffices
to prove that over any commutative ring R any element ¢ € R™ such that some
component is a unit is equivalent over R to e, and this is obvious.

Lemma 3.3. Let R be an entire ring, and let S be a multiplicative subset.
Let x, y be independent variables. If f(x) ~ f(0) over § ~1R[x], then there exists
¢ € S such that f(x + cy) ~ f(x) over R[x, y].

Proof. Let M e GL,(S 'R[x]) be such that f(x) = M(x)f(0). Then
M(x)~f(x) = f(0)is constant, and thus invariant under translation x — x + y.
Let

G(x, y) = MOOM(x + y)~ .

Then G(x, y)f(x + y) = f(x). We have G(x, 0) = I whence
G(x,y) =1 + yH(x, y)

with H(x, y) € ST'R[x, y]. There exists c € S such that cH has coefficients in
R. Then G(x, cy) has coefficients in R. Since det M(x) is constant in S~ 'R, it
follows that det M(x + cy) is equal to this same constant and therefore that
det G(x, cy) = 1. This proves the lemma.

Theorem 3.4. Let R be an entire ring, and let f be a unimodular vector in
RIx]™, such that one component has leading coefficient 1. Then f(x) ~ f(0)
over R[x].

Proof. Let J be the set of elements ¢ € R such that f(x + cy) is equivalent
to f(x) over R[x, y]. Then J is an ideal, for if ¢ € J and a € R then replacing y
by ay in the definition of equivalence shows that f(x + cay) is equivalent to
f(x) over R[x, ay], so over R[x, y]. Equally easily, one sees that if ¢, c'e J
then ¢ + ¢’ € J. Now let p be a prime ideal of R. By Corollary 3.2 we know
that f(x) is equivalent to f(0) over R,[x], and by Lemma 3.3 it follows that
there exists c € R and c ¢ p such that f(x + cy) is equivalent to f(x) over
R[x, y]. Hence J is not contained in p, and so J is unit ideal in R, so there exists
an invertible matrix M(x, y) over R[x, y] such that

SO+ y) = M(x, y) f(x).

Since the homomorphic image of an invertible matrix is invertible, we substitute
0 for x in this last relation to conclude the proof of the theorem.

Theorem 3.5. (Quillen-Suslin). Let k be a field and let f be a unimodular
vector in k[x,, . . ., x,]'". Then f has the unimodular extension property.
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Proof. By induction on r. If r = 1 then k[x,] is a principal ring and the
theorem is left to the reader. Assume the theorem for » — 1 variables withr = 2,
and put

R = k[xl,...,xr_l].

We view f as a vector of polynomials in the last variable x, and want to apply
Theorem 3.4. We can do so if some component of f has leading coefficient 1 in
the variable x,. We reduce the theorem to this case as follows. The proof of the
Noether Normalization Theorem (Chapter VIII, Theorem 2.1) shows that if we
let

then the polynomial vector

f(xl,'-"xr)zg(yl""’yr)

has one component with y,-leading coefficient equal to 1. Hence there exists a
matrix N(y) = M(x) invertible over R[x,] = R[y,] such that

91 V) =Ny )90, o V-1, 0),

and g(yy,...,y,-4,0) is unimodular in k[y,, ..., y,—,]™. We can therefore
conclude the proof by induction.

We now give other formulations of the theorem. First we recall that a
module E over a commutative ring A is called stably free if there exists a finite
free module F such that E @ F is finite free.

We shall say that a commutative ring A has the unimodular column exten-
sion property if every unimodular vector f € A has the unimodular extension
property, for all positive integers n.

Theorem 3.6. Let A be a commutative ring which has the unimodular column
extension property. Then every stably free module over A is free.

Proof. Let E be stably free. We use induction on the rank of the free
modules F such that E @ F is free. By induction, it suffices to prove that if
E® Aisfreethen Eisfree. Let E® A = A™ and let

p: A" > 4

be the projection. Let u'! be a basis of 4 over itself. Viewing 4 as a direct
summand in E® 4 = A™ we write

ul = t(a“,...,anl) Wlth ail EA.
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Then u' is unimodular, and by assumption u® is the first column of a matrix
M = (a;;) whose determinant is a unit in 4. Let

w=Me for j=1,...,n,

where ¢ is the j-th unit column vector of A®™. Note that u' is the first column
of M. By elementary column operations, we may change M so that v’ € E for
j=2...,n Indeed, if pe/ = cu' for j = 2 we need only replace ¢’ by &/ — ce'.
Without loss of generality we may therefore assume that u?, ..., u" lie in E.
Since M is invertible over A, it follows that M induces an automorphism of
A™ as A-module with itself by

X — MX.
It follows immediately from the construction and the fact that A = E@® A
that M maps the free module with basis {e?, ..., ¢"} onto E. This concludes
the proof.

If we now feed Serre’s Theorem 2.9 into the present machinery consisting
of the Quillen-Suslin theorem and Theorem 3.6, we obtain the alternative version
of the Quillen-Suslin theorem:

Theorem 3.7. Let k be a field. Then every finite projective module over the
polynomial ring klx,, . .., x,] is free.

§4. THE KOSZUL COMPLEX

In this section, we describe a finite complex built out of the alternating
product of a free module. This gives an application of the alternating product,
and also gives a fundamental construction used in algebraic geometry, both
abstract and complex, as the reader can verify by looking at Griffiths-Harris
[GrH 78], Chapter V, §3; Grothendieck’s [SGA 6]; Hartshorne [Ha 77], Chapter
I11, §7; and Fulton-Lang [FuL 85], Chapter IV, §2.

We know from Chapter XX that a free resolution of a module allows us to
compute certain homology or cohomology groups of a functor. We apply this
now to Hom and also to the tensor product. Thus we also get examples of explicit
computations of homology, illustrating Chapter XX, by means of the Koszul
complex. We shall also obtain a classical application by deriving the so-called
Hilbert Syzygy theorem.

Let A be a ring (always assumed commutative) and M a module. A sequence
of elements x,, ..., x, in A is called M-regular if M/(x,, ..., x, )M # 0, if x,
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is not divisor of zero in M, and for i = 2, x; is not divisor of 0 in
M/(x,...,x;- M.

It is called regular when M = A.

Proposition 4.1. Let I = (x,,..., x,) be generated by a regular sequence
in A. Then 1/I? is free of dimension r over A/I.

Proof. Let X; be the class of x; mod I%. It suffices to prove that X,, ..., X,
are linearly independent. We do this by induction on r. For r = 1, if ax = 0,
then ax = bx? for some b € 4,50 x(a — bx) = 0. Since x is not zero divisor in A,
we havea = bxsoa = 0.

Now suppose the proposition true for the regular sequence x,,..., x,_;.
Suppose

a5 =0 in I/

We may assume that ) a;x; = 0in 4; otherwise Y a;x; = Y y;x; with y; € I and
we can replace g; by a; — y; without changing a;.
Since x, is not zero divisor in A/(x, ..., x,_,) there exist b, € A such that

r—1 r—1 r—1
ax,+ Y ax;=0=a,= Y bx;= Y (a; + b;x,)x; = 0.
i=1 i=1 i=1

= 3

By induction,
r—=1
a; + b;x, e Y Ax; G=1,...,r=1)
i=1

soa;e I forallj,so a; = 0 for all j, thus proving the proposition.

Let K, L be complexes, which we write as direct sums

K=@®K, and L=@L,

with p, geZ. Usually, K,= L, =0 for p, ¢ <0. Then the tensor product
K ® L is the complex such that -

(K®L),= D K,QL,;

p+g=n
and for u € K, v e L, the differential is defined by
du®v)=du®v + (—1)’u ® dv.

(Carry out the detailed verification, which is routine, that this gives a complex.)



852 FINITE FREE RESOLUTIONS XXl, §4

Let A be a commutative ring and x € 4. We define the complex K(x) to have
Ky(x) = A, K,(x) = Ae,, where e, is a symbol, Ae, is the free module of rank 1
with basis {e,}, and the boundary map is defined by de; = x, so the complex
can be represented by the sequence

0 > de, — A — 0

I I
0 » Ky (x) = Ko(x) —0

More generally, for elements x,, ..., x, € A we define the Koszul complex
K(x) = K(x4, ..., x,) as follows. We put:

Koyx) = A;
K,(x) = free module E with basis {e,, ..., e};
K,(x) = free module /VE with basis {e;, Ao A e,-p}, i <o <y
K,(x) = free module /\VE of rank 1 with basis e; A -+ - A e,.
We define the boundary maps by de; = x; and in general
d:K,(x) > K,_(x)
by
p
dle, A--- Ae)= Z(—l)""lx,uei1 A ABL AN Ae .
j:l J J P
A direct verification shows that d> = 0, so we have a complex
0-K((x)—=- -2 Kx)=»--=2Ki(x)>4-0

The next lemma shows the extent to which the complex is independent of the
ideal I = (x;, ..., x,) generated by (x). Let

I=0G,..0x)2 ' =W 0)

be two ideals of A. We have a natural ring homomorphism
can: A/l' - A/l
Let {e}, ..., e,} be a basis for K,(y), and let
yi=).c;x; with ¢ eA.
We define £ : K,(y) = K (x) by
fiei =Y cije;
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and

fo=/fin-- A fi,  product taken p times.
Let D = det(c;;) be the determinant. Then for p = r we get that

f,: K,(y) = K,(x) is multiplication by D.

Lemma 4.2.  Notation as above, the homomorphisms f,, define a morphism of
Koszul complexes:

0—K,(y) — - —K,(y)— —K,()) —A—A4/I'—>0

T

0 — K (X)— -+ — K (x) — - —— K, (x) —— A — A/l — 0

and define an isomorphism if D is a unit in A, for instance if (y) is a permutation

of (x).
Proof. By definition

r r
fle, A ne)= (Zciu'ej) A A (Zcipjej).
j=1 J

=1
Then

fd(e;, A - A e))

tp

= f(Z(—l)"‘ly,-ke;1 A A g\;-k INERRIVN e,fp)
k
r PaN r
= ;(—l)khlyik<zciljej) A A Z N A (Zcipjej)
i=1 J

= Z(‘l)k-l(._r Ciljej) A A (
Jj=1 J

=df(e;, A+ A e;)

1~
K]
£
=
~.
(&)
L
\—/
>
>
N
.
1+
o
bl
S,
[
e,
v

I
-

using y; = > ¢;,j%;- This concludes the proof that the f, define a homomorphism
of complexes.

In particular, if (x) and (y) generate the same ideal, and the determinant D
is a unit (i.e. the linear transformation going from (x) to (y) is invertible over
the ring), then the two Koszul complexes are isomorphic.



854 FINITE FREE RESOLUTIONS XXI, §4

The next lemma gives us a useful way of making inductions later.

Proposition 4.3. There is a natural isomorphism
K(x;,...,x,) ~ K(x,) ® --- ® K(x,).

Proof. The proof will be left as an exercise.

LetI = (x4,..., x,) be the ideal generated by x;, .. ., x,. Then directly from
the definitions we see that the 0-th homology of the Koszul complex is simply
A/IA.

More generally, let M be an A-module. Define the Koszul complex of M by

Kx;M)=K(xy,...,%;M)=K(x,...,x)®,M

Then this complex looks like

0> Kx)OM— - > Kx) @ M—> M"D - M— 0.

We sometimes abbreviate H p(x; M) for H,K(x; M). The first and last homology
groups are then obtained directly from the definition of boundary. We get

Hy(K(x; M)) =~ M/ IM;
H,(K(x); M) = {v € M such that x,v = O foralli = 1,..., r}.

In light of Proposition 4.3, we study generally what happens to a tensor
product of any complex with K(x), when x consists of a single element. Let
y € A and let C be an arbitrary complex of A-modules. We have an exact sequence
of complexes

(D 0—>C—> CRK(y) — (COK(»)/C—0

made explicit as follows.

] !
0—Coy €1 ®@ABC,®K(y) —CRK()—0

d,®id
0—— C, ——(C, ® A) D (Cyp_y ® Ky(y) ——C_ s ® Ky(y) ——0

d,.1®id

0——Cp_ i ——(Coey ® A) D (Cpzy ® Ky()) ——Co_ s ® Ky(y) ——0
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We note that C @ K (y) is just C with a dimension shift by one unit, in other
words

2 (€ ® Ki(n+1 = C, @ Ky(y).
In particular,
3 H,.(C ® K(y)/C) = H,(C).

Associated with an exact sequence of complexes, we have the homology sequence,
which in this case yields the long exact sequence

—H,(O) —— H,1(C ® Ky(y))

— H,,(C ® K(»)/C)— H,(C)
H:()C)
which we write stacked up according to the index:
C)) — H,,(C) = H,,(C) = H,,,(C ® K(y)) =
— H,(C) = H,(C) > H,(C ® K(y)) =
ending in lowest dimension with
) — H,(C) = H|(C @ K(y)) = Hy(C) = Hy(C).

Furthermore, a direct application of the definition of the boundary map and the
tensor product of complexes yields:

The boundary map on H,(C) (p = 0) is induced by multiplication by (—1)y:
Q) 0 = (=DPm(y) : H(C) = Hy(C).
Indeed, write
(C®KY), = (€, @A) D (Cpoy ®K() = C, @ C,pey.

Let (v, w) € C, ® C,_, with v € C, and w € C,_,. Then directly from the
definitions,

@) dw, w) = (dv + (—DP " yw, dw).
To see (6), one merely follows up the definitions of the boundary, taking an
element w € C, = C, ® K,(y), lifting back to (0, w), applying d, and lifting

back to C,. If we start with a cycle, i.e. dw = 0, then the map is well defined
on the homology class, with values in the homology.

Lemmad.4. Letyec Aandlet C be a complex as above. Then m(y) annihilates
H,(C ® K(y)) for all p = 0.

Proof. 1If (v, w) is a cycle, i.e. d(v, w) = 0, then from (7) we get at once
that (yv, yw) = d(0, (—1)Pv), which proves the lemma.



856 FINITE FREE RESOLUTIONS XXl, §4

In the applications we have in mind, we let y = x, and
C = K(xl, ey X s M) = K(xl, ey xrﬁl) ® M.

Then we obtain:

Theorem 4.5.(a) There is an exact sequence with maps as above:

o> H Ky, %y M) = H Ky, %3 M) = HKGy . %5 M)
s Hy(X gy Xy M) = Ho(ps s Xy M) 28 Ho(xy . %,y M),

(b) Every element of I = (xy, ..., x,) annihilates H,(x; M) for p = 0.
(¢) If I = A, then H,(x; M) = 0 for all p = 0.

Proof. This is immediate from Proposition 4.3 and Lemma 4.4.
We define the augmented Koszul complex to be
0—>K(x;M)— -+ > K|(x; M) =MD > M — M/IM — 0.
Theorem 4.6. Let M be an A-module.
(a) Let xy, ..., x, be a regular sequence for M. Then H,K(x; M) = 0O for

p > 0. (Of course, HyK(x; M) = M/IM.) In other words, the augmented
Koszul complex is exact.

(b) Conversely, suppose A is local, and x,, . . ., x, lie in the maximal ideal of
A. Suppose M is finite over A, and also assume that H K(x; M) = 0. Then
(x1, ..., x,) is M-regular.

Proof. We prove (a) by induction on r. If r = 1 then H,(x; M) = 0 directly
from the definition. Suppose r > 1. We use the exact sequence of Theorem
4.5(a). If p > 1 then H,(x; M) is between two homology groups which are 0, so
H,(x; M) = 0. If p = 1, we use the very end of the exact sequence of Theorem
4.5(a), noting that m(x,) is injective, so by induction we find H(x; M) = 0 also,
thus proving (a).

As to (b), by Lemma 4.4 and the hypothesis, we get an exact sequence

m(x,)

Hl(xl,. ey .xr_l; M)—'—) Hl(xl,. .« .y x,_l;M)—> Hl(.x; M) = 0,

so m(x,) is surjective. By Nakayama’s lemma, it follows that

Hl(xl, ey X1 M) = 0.
By induction (xy, . . ., x,_;) is an M-regular sequence. Looking again at the tail
end of the exact sequence as in (a) shows that x, is M/(x,, . . ., x,_;)M-regular,

whence proving (b) and the theorem.

We note that (b), which uses only the triviality of H; (and not all H,) is
due to Northcott [No 68], 8.5, Theorem 8. By (a), it follows that H, = 0 for
p > 0.
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An important special case of Theorem 4.6(a) is when M = A, in which case
we restate the theorem in the form:

Let xy,..., x, be a regular sequence in A. Then K(x,,..., x,) is a free
resolution of A/I:

0-K,(x)> > Ki(x)»>A4—- A/l - 0.

In particular, A/l has Tor-dimension < r.

For the Hom functor, we have:

Theorem 4.7. Let x|,..., x, be a regular sequence in A. Then there is an
isomorphism

¢, »: H(Hom(K(x), M)) -» M/IM
to be described below.

Proof. The module K,(x) is 1-dimensional, with basis e; A --- A e,.
Depending on this basis, we have an isomorphism

Hom(K,(x), M) ~ M,

whereby a homomorphism is determined by its value at the basis element in M.
Then directly from the definition of the boundary map d, in the Koszul complex,
which is

-
dr:elf\"'/\er'_’zl(“l)i"lxjel/\"'/\éj/\"'/\e,
j=

we see that

H'(Hom(K (x), M) ~ Hom(K (x), M)/d"~! Hom(K, _(x), M)
~ M/IM.

This proves the theorem.

The reader who has read Chapter XX knows that the i-th homology group
of Hom(K(x), M) is called Ext/(A/I, M), determined up to a unique isomorphism
by the complex, since two resolutions of A/ differ by a morphism of complexes,
and two such morphisms differ by a homotopy which induces a homology iso-
morphism. Thus Theorem 4.7 gives an isomorphism

Oy u  Ext'(4/1, M) - M/IM.

In fact, we shall obtain morphisms of the Koszul complex from changing the
sequence. We go back to the hypothesis of Lemma 4.2.
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Lemma 4.8. IfI = (x) = (y) where (x), (y) are two regular sequences, then
we have a commutative diagram

M/IM

PxM
EXt'(A/I, M) JD = det(c;;)
Py M

M/IM
where all the maps are isomorphisms of A/I-modules.

The fact that we are dealing with A/I-modules is immediate since multiplication
by an element of A commutes with all homomorphisms in sight, and I an-
nihilates A/I.

By Proposition 4.1, we know that // I? is a free module of rank r over A/ 1.
Hence

N/

is a free module of rank 1, with basis X; A --- A X, (where the bar denotes
residue class mod I%). Taking the dual of this exterior product, we see that under
a change of basis, it transforms according to the inverse of the determinant
mod I2. This allows us to get a canonical isomorphism as in the next theorem.

Theorem 4.9. Let x,, ..., x, be a regular sequence in A, and let I = (x).
Let M be an A-module. Let

Wx,M :M/IM — M/IM) ® /\r(I/Iz)dual

be the embedding determined by the basis (X, A -+ A X,)% of /\"(I/I?)®2.
Then the composite isomorphism

Ext’(4/I, M) &2 M/IM Yno M, (M/IM) @ N'(I/I?)™

is a functorial isomorphism, independent of the choice of regular generators
for 1.

We also have the analogue of Theorem 4.5 in intermediate dimensions.

Theorem 4.10. Let x|, ..., x, be an M-regular sequence in A. Let I = (x).
Then

Exti(4/I,M) =0 for i<r.

Proof. For the proof, we assume that the reader is acquainted with the
exact homology sequence. Assume by induction that Ext'(4/I, M) = 0 for
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i <r — 1. Then we have the exact sequence
0 = Ext'~(4/I, M/x,M) — Exti(4/I, M) 5 Ext{(A/I, M)

fori < r. But x, € I so multiplication by x, induces 0 on the homology groups,
which gives Ext'(4/I, M) = 0 as desired.

Let Ly - N — 0 be a free resolution of a module N. By definition,
Tor{(N, M) = i-th homology of the complex L ® M.

This is independent of the choice of Ly up to a unique isomorphism. We now
want to do for Tor what we have just done for Ext.

Theorem 4.11. Let] = (xy, ..., x,) be an ideal of A generated by a regular

sequence of length r.

(i) There is a natural isomorphism

Tor(A/1, A/I) = Ny (I/T1?), for i=0.
(i) Let L be a free A/I-module, extended naturally to an A-module. Then
Tor(L, A/I) ~ L ® Ny, (I/1?), for iz0.

These isomorphisms will follow from the next considerations.
First we use again that the residue classes X,, ..., X, mod I* form a basis of
I/I? over A/I. Therefore we have a unique isomorphism of complexes

@< K(x) ® AT - \UI/T?) = D N/
with zero differentials on the right-hand side, such that

eé.

it A "'AeiPHxi‘ A o AX

ip*

Lemma 4.12. Let I = (x) D I' = (y) be two ideals generated by regular
sequences of length r. Let f: K(y) — K(x) be the morphism of Koszul complexes
defined in Lemma 4.2. Then the following diagram is commutative:

K(y)® A/l —2— /\A/I'(I’/I,Z)

f ®can canonical hom

K(x) @ Al —— N\uul/I?)
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Proof. We have

Pxo(f @can)(e;, A -+ Aej, ®1)

=V Ao A J—’i,, = can(cpy(egl Ao A eép))-
This proves the lemma.

In particular, if I' = I then we have the commutative diagram

l N
e

K(x)

K(y)

which shows that the identification of Tor(A4/I, A/I) with A(I/I?) via the
choices of bases is compatible under one isomorphism of the Koszul complexes,
which provide a resolution of A/I. Since any other homomorphism of Koszul
complexes is homotopic to this one, it follows that this identification does not
depend on the choices made and proves the first part of Theorem 4.11.

The second part follows at once, because we have

Torf(A/I, L) = H{K(x) ® L) = H{(K(x) ® 4 A/I) ® 4,1 L
= /\54/1(1/12) ® L.

This concludes the proof of Theorem 4.11.

Example. Letk bea field and let 4 = k[x,, ..., x,] be the polynomial ring
inrvariables. LetI = (x,,..., x,) be theideal generated by the variables. Then
A/I = k, and therefore Theorem 4.11 yields for i = 0:

Torf(k, k) ~ NI/T?)
Tor(L, k) ~ L ® A\i(l/I?)

Note that in the present case, we can think of I/1? as the vector space over k with
basis X;, ..., X,. Then A can be viewed as the symmetric algebra SE, where E
is this vector space. We can give a specific example of the Koszul complex in this
context as in the next theorem, given for a free module.
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Theorem 4.13. Let E be a finite free module of rank r over the ring R. For
eachp = 1,...,r there is a unique homomorphism

d,: \’E® SE - \*"'E ® SE
such that

d{(xy A -+ A xp)®y)

(D7 A AKX A AX)® (G ®Y)

[
RN

13

where x;€ E and y € SE. This gives the resolution
0—+/\'E@SE—»/\’_lE®SE—>~-->/\OE®SE—>R—>0

Proof. The above definitions are merely examples of the Koszul complex
for the symmetric algebra SE with respect to the regular sequence consisting of
some basis of E.

Since d, maps A\PE ® S’E into /\P"'E ® S?"'E, we can decompose this
complex into a direct sum corresponding to a given graded component, and
hence:

Corollary 4.14. For each integer n = 1, we have an exact sequence
0—>/\'E@S""E—»---—»/\1E®S"_1E—->S"E—>0
where S'E = () for j < 0.

Finally, we give an application to a classical theorem of Hilbert. The poly-
nomial ring A = k[x,, ..., x,] is naturally graded, by the degrees of the homo-
geneous components. We shall consider graded modules, where the grading is in
dimensions = 0, and we assume that homomorphisms are graded of degree 0.

So suppose M is a graded module (and thus M; = Ofori < 0)and M is finite
over A. Then we can find a graded surjective homomorphism

LO g M - 0
where L, is finite free. Indeed, let wy, ..., w, be homogeneous generators of M.
Let ey, ..., e, be basis elements for a free module L, over A. We give L, the

grading such that if a € 4 is homogeneous of degree d then ae; is homogeneous of
degree

deg ae; = deg a + deg w;.

Then the homomorphism of L, onto M sending e; — w; is graded as desired.
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The kernel M| is a graded submodule of L,. Repeating the process, we can find a
surjective homomorphism

Li->M,-0.

We continue in this way to obtain a graded resolution of M. We want this
resolution to stop, and the possibility of its stopping is given by the next theorem.

Theorem 4.15. (Hilbert Syzygy Theorem). Let k be a field and
A= k[xy,...,x,]
the polynomial ring in r variables. Let M be a graded module over A, and let
0-K->L,_,—>-->Ly>M->0

be an exact sequence of graded homomorphisms of graded modules, such that
Ly,...,L,_, arefree. Then K is free. If M is in addition finite over A and
Ly, ..., L,_, are finite free, then K is finite free.

Proof. From the Koszul complex we know that Tor{M, k) = 0fori > r
and all M. By dimension shifting, it follows that

Tor(K,k)=0 for i>0.

The theorem is then a consequence of the next result.

Theorem 4.16. Let F be a graded finite module over A = k[x,, ..., x,]. If
Tor,(F, k) = O then F is free.

Proof. The method is essentially to do a Nakayama type argument in the
case of the non-local ring 4. First note that

F®k = F/IF
where I = (x,,...,x,). Thus F ® k is naturally an A4/ = k-module. Let
vy, ..., 0, be homogeneous elements of F whose residue classes mod IF form a
basis of F/IF over k. Let L be a free module with basis e, ..., e,. Let
L-F
be the graded homomorphism sending e; — v; for i = 1,...,n. It suffices to

prove that this is an isomorphism. Let C be the cokernel, so we have the exact

sequence
L-F->C-0.

Tensoring with k yields the exact sequence

L®k-FR®k->CRk-O.
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Since by construction the map L ® k - F ® k is surjective, it follows that
C ® k = 0. But C is graded, so the next lemma shows that C = 0.

Lemma 4.17. Let N be a graded module over A = k[x,,...,x,]. Let
I=(xy,...,x,). If NJIN =0 then N =0.

Proof. This is immediate by using the grading, looking at elements of N
of smallest degree if they exist, and using the fact that elements of I have degree
> 0.

We now get an exact sequence of graded modules
O-E->L->F->0

and we must show that E = (. But the exact homology sequence and our as-
sumption yields

O0=Tor((F,k)EQRk->L®k->F®k-DO0.

By construction L ® k » F ® k is an isomorphism, and hence E® k = 0.
Lemma 4.17 now shows that £ = 0. This concludes the proof of the syzygy
theorem.

Remark. The only place in the proof where we used that k is a field is in the
proof of Theorem 4.16 when we picked homogeneous elements v,, ..., v,in M
whose residue classes mod IM form a basis of M/IM over A/IA. Hilbert’s
theorem can be generalized by making the appropriate hypothesis which allows
us to carry out this step, as follows.

Theorem 4.18. Let R be a commutative local ring and let A = R[x, ..., x,]
be the polynomial ring in r variables. Let M be a graded finite module over A,
projective over R. Let

0-K-L_->--»>Li>M->0

be an exact sequence of graded homomorphisms of graded modules such that
Lo, ..., L,_ are finite free. Then K is finite free.

Proof. Replace k by R everywhere in the proof of the Hilbert syzygy
theorem. We use the fact that a finite projective module over a local ring is free.
Not a word needs to be changed in the above proof with the following exception.
We note that the projectivity propagates to the kernels and cokernels in the
given resolution. Thus F in the statement of Theorem 4.16 may be assumed
projective, and each graded component is projective. Then F/IF is projective
over A/IA = R, and so is each graded component. Since a finite projective
module over a local ring is free, and one gets the freeness by lifting a basis from the
residue class field, we may pick vy, ..., v, homogeneous exactly as we did in the
proof of Theorem 4.16. This concludes the proof.
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EXERCISES

For exercises 1 through 4 on the Koszul complex, see [No 68], Chapter 8.

1.

Let0— M’ — M — M" — 0 be an exact sequence of A-modules. Show that tensoring
with the Koszul complex K(x) one gets an exact sequence of complexes, and therefore
an exact homology sequence

0— H,K(x; M) —> H K(x; M) > H.K(x; M") —> - - -
o= HK(x; M) — H,K(x; M) - H,K(x; M"Y — -

. (a) Show that there is a unique homomorphism of complexes

f:Kx; M) —> K(xy,..., x5 M)
such that for v € M:

e, N Ne Qxv ifi, =r
fp(ei./\"'/\ei,,®v)={” Ip r P

e “Ahe, ®v o ifi, =

i

(b) Show that f is injective if x, is not a divisor of zero in M.
(c) For a complex C, denote by C(—1) the complex shifted by one place to the left,
so C(—1), = C,_, for all n. Let M = M/x,M. Show that there is a unique

homomorphism of complexes

g: K@y, ..., x_, L M) > K(xy, ..., x,_;; M)(—1)
such that for v € M:
e N he Qv ifi,=r

g"(e"‘/\”'“"ﬂ®v)={o iti, <r
<

(d) If x, is not a divisor of 0 in M, show that the following sequence is exact:
0 — K(x; M)—f> Ky, ...y x,-1, 1 M)—g> K@y, ..., x,_;; M)(—1)— 0.
Using Theorem 4.5(c), conclude that for all p = 0, there is an isomorphism

H,K(x; M) > HK(x,, ..., x,_1; M).

. Assume A and M Noetherian. Let I be an ideal of A. Let ay, . . ., a; be an M-regular

sequence in I. Show that this sequence can be extended to a maximal M-regular
sequence 4y, ..., a, in I, in other words an M-regular sequence such that there is
no M-regular sequence a, ..., a4y in l.

. Again assume A and M Noetherian. Let I = (x;,..., x,) and leta,..., a, be a

maximal M-regular sequence in /. Assume /M # M. Prove that
H,_(x; M) # 0 but H,(x; M) = 0 forp >r—gq.

[See [No 68], 8.5 Theorem 6. The result is similar to the result in Exercise 5, and
generalizes Theorem 4.5(a). See also [Mat 80], pp. 100-103. The result shows that
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all maximal M-regular sequences in M have the same length, which is called the
I-depth of M and is denoted by depth,(M). For the proof, let s be the maximal integer
such that H K(x; M) # 0. By assumption, Hy(x; M) = M/IM # 0, so s exists.
We have to prove that ¢ + s = r. First note that if ¢ = 0 then s = r. Indeed, if
g = 0 then every element of I is zero divisor in M, whence I is contained in the
union of the associated primes of M, whence in some associated prime of M. Hence
H.(x; M) # 0.
Next assume ¢ > 0 and proceed by induction. Consider the exact sequence

0>M3 M- MaM—0

where the first map is m(a;). Since / annihilates H,(x; M) by Theorem 4.5(c), we
get an exact sequence

0— H,(x; M) —> H,(x; M/a;M) — H,_,(x; M) — 0.

Hence H,, ,(x; M/a,M) # 0, but H,(x; M/a;M) = O for p = 5 + 2. From the hypothesis
thata,, ..., a,is a maximal M-regular sequence, it follows at once that a,, ..., a,
is maximal M/a,M-regular in I, so by induction, ¢ — 1 = r — (s + 1) and hence
g + s = r, as was to be shown.]

5. The following exercise combines some notions of Chapter XX on homology, and
some notions covered in this chapter and in Chapter X, §5. Let M be an A-module.

Let A be Noetherian, M finite module over A, and I an ideal of 4 such that IM # M.
Let r be an integer = 1. Prove that the following conditions are equivalent:

(i) Ext/(N, M) = Oforalli < rand all finite modules N such that supp(N) < %(I).
(ii) Exti(4/I, M) =Oforalli < r.
(iii) There exists a finite module N with supp(N) = ¥ (I) such that
Ext/(N,M) =0 foralli <r.
(iv) There exists an M-regular sequence a,, ..., a, in I.
[Hint: (i) = (ii) = (iii) is clear. For (iii) = (iv), first note that
0 = Ext°(N, M) = Hom(N, M).

Assume supp(N) = ¥(I). Find an M-regular element in I. If there is no such element,
then I is contained in the set of divisors of 0 of M in A4, which is the union of the as-
sociated primes. Hence I < P for some associated prime P. This yields an injection
A/P = M, s0

0 # Hom, (Ap/PAp, M).

By hypothesis, Np % 0 s0 Np/PNp 5 0, and Np/PN, is a vector space over Ap/PAp,
so there exists a non-zero Ap/PAp homomorphism

Np/PNp - Mp,

so Hom,(Np, Mp) # 0, whence Hom(N, M) # 0, a contradiction. This proves the
existence of one regular element a,.
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Now let M, = M/a,M. The exact sequence
0-M a—’+M—>M/a1M—>O
yields the exact cohomology sequence
— Exti(N, M) - Ext(N, M/a,M) - Ext'*{(N, M) -

so Ext{(N, M/a,M) = 0 for i < r — 1. By induction there exists an M,-regular se-
quence a,, ..., a, and we are done.

Last, (iv) = (i). Assume the existence of the regular sequence. By induction,
Exti(N,a,M) = Ofori < r — 1. We have an exact sequence for i < r:

0 — Ext{(N, M) 3 Ext{(N, M)

But supp(N) = Z(ann(N)) C (), so I C rad(ann(N)), so a, is nilpotent on N.
Hence a, is nilpotent on Ext/(N, M), so Exti(N, M) = 0. Done.] See Matsumura’s
[Mat 70], p. 100, Theorem 28. The result is useful in algebraic geometry, with for
instance M = A itself. One thinks of A as the affine coordinate ring of some variety,
and one thinks of the equations a; = 0 as defining hypersurface sections of this variety,
and the simultaneous equations a@; = - - - = a, = 0 as defining a complete intersection.
The theorem gives a cohomological criterion in terms of Ext for the existence of such
a complete intersection.



APPENDIX 1

The Transcendence of
eand &

The proof which we shall give here follows the classical method of Gelfond
and Schneider, properly formulated. It is based on a theorem concerning values
of functions satisfying differential equations, and it had been recognized for some
time that such values are subject to severe restrictions, in various contexts.
Here, we deal with the most general algebraic differential equation.

We shall assume that the reader is acquainted with elementary facts con-
cerning functions of a complex variable. Let f be an entire function (ie. a
function which is holomorphic on the complex plane). For our purposes, we
say f is of order < p if there exists a number C > 1 such that for all large R we
have

@) < ¥

whenever |z| = R. A meromorphic function is said to be of order < pifitisa
quotient of entire functions of order < p.

Theorem. Let K be a finite extension of the rational numbers. Let fi, ..., fy
be meromorphic functions of order < p. Assume that the field K(f,, ..., fv)
has transcendence degree = 2 over K, and that the derivative D = d/dz maps
thering K[ fy, ..., fvlintoitself. Letw,, ..., w,, be distinct complex numbers
not lying among the poles of the f;, such that

fiw,)e K
foralli=1,...,Nandv=1,...,m Thenm < 10p[K : Q].

Corollary 1. (Hermite-Lindemann). If « is algebraic (over Q) and # 0,
then ¢* is transcendental. Hence m is transcendental.

867
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Proof. Suppose that o and ¢* are algebraic. Let K = Q(a, ¢*). The two
functions z and e* are algebraically independent over K (trivial), and the ring
K[z, ¢*] is obviously mapped into itself by the derivative. Our functions take on
algebraic values in K at o, 2a, ..., mo for any m, contradiction. Since 2™ = 1,
it follows that 27i is transcendental.

Corollary 2. (Gelfond-Schneider). If a is algebraic #0, 1 and if B is
algebraic irrational, then of = 8% is transcendental.

Proof. We proceed as in Corollary 1, considering the functions ¢*' and ¢’
which are algebraically independent because f is assumed irrational. We look
at the numbers loga, 2 loga, . . ., mlog a to get a contradiction as in Corollary 1.

Before giving the main arguments proving the theorem, we state some lemmas.
The first two, due to Siegel, have to do with integral solutions of linear homo-
geneous equations.

Lemma 1. Let

a“xl + "'+a1nx"=0

Xy + -+ ayx, =0

be a system of linear equations with integer coefficients a;;, and n > r. Let A
be a number such that |a;;| < A for all i, j. Then there exists an integral,
non-trivial solution with

x| < 2Q2nAy/e=",

Proof. We view our system of linear equations as a linear equation
L(X) = 0, where L is a linear map, L: Z"™ — Z®, determined by the matrix of
coefficients. If B is a positive number, we denote by Z™(B) the set of vectors X
in Z™ such that | X| £ B (where | X | is the maximum of the absolute values
of the coefficients of X). Then L maps Z"™(B) into Z"(nBA). The number of
elements in Z™(B) is =2 B" and <(2B + 1)". We seek a value of B such that
there will be two distinct elements X, Y in Z®(B) having the same image,
L(X) = L(Y). For this, it will suffice that B" > (2nBA)', and thus it will suffice
that

B = (2nAy’®=",

We take X — Y as the solution of our problem.

Let K be a finite extension of Q, and let I be the integral closure of Z in K.
From Exercise 5 of Chapter IX, we know that Iy is a free module over Z, of
dimension [K:Q]. We view K as contained in the complex numbers. If
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o € K, a conjugate of « will be taken to be an element oo, where ¢ is an embedding
of Kin C. By the size of a set of elements of K we shall mean the maximum of the
absolute values of all conjugates of these elements.

By the size of a vector X = (x,, ..., x,) we shall mean the size of the set of its
coordinates.
Let oy, ..., w, be a basis of I over Z. Let a € Iy, and write

a=aw; + -+ ayy.

Let ), ..., w}, be the dual basis of w,, ..., w, with respect to the trace. Then
we can express the (Fourier) coefficients a; of « as a trace,

a; = Tr(oaw?).

The trace is a sum over the conjugates. Hence the size of these coefficients is
bounded by the size of o, times a fixed constant, depending on the size of the
elements .

Lemma 2. Let K be a finite extension of Q. Let

Ot“xl + - + Otlnx,,=0

%Xy + o+ tpx, =0

be a system of linear equations with coefficients in Iy, and n > r. Let A be a
number such that size(a;;) < A, for all i, j. Then there exists a non-trivial
solution X in I such that

size(X) < C(C,nA)'™ ",
where C, C, are constants depending only on K.
Proof. Let wy, ..., wy be a basis of Iy over Z. Each x; can be written
X;=Cjwy + -+ Eyoy
with unknowns ¢;;. Each a;; can be written
%ij = ;10 + o0+ Ay Oy

with integers a;;; € Z. If we multiply out the a;;x;, we find that our linear equa-
tions with coefficients in I; are equivalent to a system of rM linear equations in
the nM unknowns &;,;, with coefficients in Z, whose size is bounded by CA, where
Cisanumber depending only on M and the size of the elements w,, together with
the products w;w,, in other words where C depends only on K. Applying
Lemma 1, we obtain a solution in terms of the ¢;;, and hence a solution X in I,
whose size satisfies the desired bound.
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The next lemma has to do with estimates of derivatives. By the size of a
polynomial with coefficients in K, we shall mean the size of its set of coefficients.
A denominator for a set of elements of K will be any positive rational integer
whose product with every element of the set is an algebraic integer. We define in
a similar way a denominator for a polynomial with coefficients in K. We
abbreviate “denominator” by den.

Let

P(Tla ey TN) = Z a(v)M(v)(T)

be a polynomial with complex coefficients, and let

Q(Tv cees TN) = z B(V)M(v)(T)

be a polynomial with real coefficients =0. We say that Q dominates P if
|| < Py for all (v). It is then immediately verified that the relation of domi-
nance is preserved under addition, multiplication, and taking partial derivatives
with respect to the variables Ti, ..., Ty.

Lemma 3. Let K be of finite degree over Q. Let f,, ..., fy be functions,
holomorphic on a neighborhood of a point w e C, and assume that D = d/dz
maps the ring K[ f1, ..., fy] into itself. Assume that f{w)€ K for alli. Then
there exists a number C, having the following property. Let P(T,, ..., Ty) be
a polynomial with coefficients in K, of degree < r. Ifweset f = P(f1,..., fv),
then we have, for all positive integers k,

size(D*f (w)) < size(P)r*k!Ck*r
Furthermore, there is a denominator for D*f (w) bounded by den(P)C%*".

Proof. There exist polynomials P(T}, ..., Ty) with coefficients in K such
that

Df; = Pi(fls-‘-,fN)'
Let h be the maximum of their degrees. There exists a unique derivation D on
K[T,, ..., Ty] such that DT, = P(T,, ..., Ty). For any polynomial P we have
N
D(P(Tl"“’ TN)) = Z(Dip)(Tb-u, TN)'Pi(Tl’-”a TN),
i=1

where D, ..., Dy are the partial derivatives. The polynomial P is dominated by
SIZC(P)(I + T1 + o+ TN)r,

and each P;is dominated by size(P;)(1 + T, + --- + Ty)". Thus DP is dominated
by

size(P)C,r(1 + Ty + --- + Ty *h
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Proceeding inductively, one sees that D*P is dominated by
size(PYCKr*k1(1 + T, - -+ + Ty) t*".

Substituting values f(w) for T;, we obtain the desired bound on D*f(w). The
second assertion concerning denominators is proved also by a trivial induction.

We now come to the main part of the proof of our theorem. Let f, g be two

functions among f}, ..., fy which are algebraically independent over K. Let
r be a positive integer divisible by 2m. We shall let r tend to infinity at the end
of the proof.
Let
F= Z b f ‘g’

ij=1

have coefficients b;;in K. Letn = r*/2m. We can select the b;; not all equal to 0,
and such that

D*F(w,) = 0

forO0 < k<mnandv = 1,..., m Indeed, we have to solve a system of mn linear
equations in r? = 2mn unknowns. Note that

mn_

2mn —mn
We multiply these equations by a denominator for the coefficients. Using the
estimate of Lemma 3, and Lemma 2, we can in fact take the b;; to be algebraic
integers, whose size is bounded by

O(r"n!C1*") £ O(n*")

for n — oo.

Since f, g are algebraically independent over K, our function F is not
identically zero. We let s be the smallest integer such that all derivatives of F
up to order s — 1 vanish at all points w,, ..., w,,, but such that D°F does not
vanish at one of the w, say w,. Then s = n. We let

y = DF(w,) # 0.

Then y is an element of K, and by Lemma 3, it has a denominator which is
bounded by O(C}) for s — co. Let ¢ be this denominator. The norm of ¢y from
K to Q is then a non-zero rational integer. Each conjugate of ¢y is bounded by
0(s**). Consequently, we get

(1) 1 < INg(en)| £ OG> A1),
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where |y|is the fixed absolute value of y, which will now be estimated very well by
global arguments.

Let 6 be an entire function of order & p, such that 6f and 6y are entire, and
6(w,) # 0. Then 6*'F is entire. We consider the entire function

H(z) = JO7FE)
n (Z - Wv)s

v=1

Then H(w,) differs from D°F(w,) by obvious factors, bounded by C5s!. By the
maximum modulus principle, its absolute value is bounded by the maximum of
H on a largecircle of radius R. If we take R large, then z — w, has approximately
the same absolute value as R, and consequently, on the circle of radius R, H(z)
is bounded in absolute value by an expression of type

3s/2rRe
s¥°Cs
R™

We select R = s!/2?. We then get the estimate

4ss
s¥Cg
Iyl < T

We now let r tend to infinity. Then both nand s tend to infinity. Combining this
last inequality with inequality (1), we obtain the desired bound on m. This
concludes the proof.

Of course, we made no effort to be especially careful in the powers of s
occurring in the estimates, and the number 10 can obviously be decreased by
exercising a little more care in the estimates.

The theorem we proved is only the simplest in an extensive theory
dealing with problems of transcendence degree. In some sense, the theorem is
best possible without additional hypotheses. For instance, if P(t) is a polynomial
with integer coefficients, then e”® will take the value 1 at all roots of P, these being
algebraic. Furthermore, the functions

t,e, e, ..., e
are algebraically independent, but take on values in Q(e) for all integral values
of t.
However, one expects rather strong results of algebraic independence to hold.
Lindemann proved that if «y, .. ., o, are algebraic numbers, linearly independent
over Q, then

are algebraically independent.
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More generally, Schanuel has made the following conjecture: I ay,..., o,
are complex numbers, linearly independent over Q, then the transcendence
degree of

an

a
Ay evns Uy, €40, €

should be = n.

From this one would deduce at once the algebraic independence of ¢ and n
(looking at 1, 2mi, e, e*™), and all other independence statements concerning the
ordinary exponential function and logarithm which one feels to be true, for
instance, the statement that n cannot lie in the field obtained by starting with the
algebraic numbers, adjoining values of the exponential function, taking algebraic
closure, and iterating these two operations. Such statements have to do with
values of the exponential function lying in certain fields of transcendence degree
< n, and one hopes that by a suitable deepening of Theorem 1, one will reach
the desired results.
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Some Set Theory

§1. DENUMERABLE SETS

Let n be a positive integer. Let J, be the set consisting of all integers k,
1 £ k £ n. If Sisaset, we say that S has n elements if there is a bijection between
Sand J,. Sucha bijection associates with each integer k as above an element of S,
say k — a,. Thus we may use J,to “count” S. Part of what we assume about the
basic facts concerning positive integers is that if § has n elements, then the integer
n is uniquely determined by S.

One also agrees to say that a set has 0 elements if the set is empty.

We shall say that a set S is denumerable if there exists a bijection of § with the
set of positive integers Z*. Such a bijection is then said to enumerate the set S.
It is a mapping

n—a,
which to each positive integer n associates an element of S, the mapping being
injective and surjective.

If D is a denumerable set, and f: S — D is a bijection of some set S with D,
then S is also denumerable. Indeed, there is a bijection g: D — Z*, and hence
g o fis a bijection of S with Z*.

Let T be a set. A sequence of elements of T is simply a mapping of Z™ into T.
If the map is given by the association n+ x,, we also write the sequence as
{Xa}nz1,0ralso {x, x,,...}. Forsimplicity, we also write {x,} for the sequence.
Thus we think of the sequence as prescribing a first, second, .. ., n-th element of

T. We use the same braces for sequences as for sets, but the context will always
make our meaning clear.

875
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Examples. The even positive integers may be viewed as a sequence {x,} if
weput x, = 2nforn = 1,2, . ... The odd positive integers may also be viewed
as a sequence {y,} if we put y,=2n — 1 for n = 1,2,.... In each case, the
sequence gives an enumeration of the given set.

We also use the word sequence for mappings of the natural numbers into a set,
thus allowing our sequences to start from O instead of 1. If we need to specify
whether a sequence starts with the 0-th term or the first term, we write

{xn}ngo or {xn}ngl

according to the desired case. Unless otherwise specified, however, we always
assume that a sequence will start with the first term. Note that from a sequence
{X,}n>0 We can define a new sequence by letting y, = x,_, for n = 1. Then
Y1 = Xg, ¥, = Xy, .... Thus there is no essential difference between the two
kinds of sequences.

Given a sequence {x,}, we call x, the n-th term of the sequence. A sequence
may very well be such that all its terms are equal. For instance, if we let x, = 1
for all n 2 1, we obtain the sequence {1, 1, 1,...}. Thus there is a difference
between a sequence of elements in a set T, and a subset of T. In the example just
given, the set of all terms of the sequence consists of one element, namely the
single number 1.

Let {x,, x,, ...} be a sequence in a set S. By a subsequence we shall mean a
sequence {Xx,, X,,,...} such that n; <n, <---. For instance, if {x,} is the
sequence of positive integers, x,, = n, the sequence of even positive integers {x,,}
is a subsequence.

An enumeration of a set S is of course a sequence in S.

A set is finite if the set is empty, or if the set has n elements for some positive
integer n. If a set is not finite, it is called infinite.

Occasionally, a map of J, into a set T will be called a finite sequence in T.
A finite sequence is written as usual,

{x4,..., %, oOF {xi}i=1,...,n'

When we need to specify the distinction between finite sequences and maps of
Z" into T, we call the latter infinite sequences. Unless otherwise specified, we
shall use the word sequence to mean infinite sequence.

Proposition 1.1. Let D be an infinite subset of Z*. Then D is denumerable,
and in fact there is a unique enumeration of D, say {ky, k,, ...} such that

ki <k, < - <k, <k, {<---.

Proof. We let k, be the smallest element of D. Suppose inductively that we
have defined k, < --- < k,, in such a way that any element k in D which is not
equaltok,..., k,is > k,. Wedefinek, , , to be the smallest element of D which
is > k,. Then the map n+ k, is the desired enumeration of D.
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Corollary 1.2. Let S be a denumerable set and D an infinite subset of S.
Then D is denumerable.

Proof. Given an enumeration of S, the subset D corresponds to a subset of
Z" inthisenumeration. Using Proposition 1.1, we conclude that we can enumer-
ate D.

Proposition 1.3. Every infinite set contains a denumerable subset.

Proof. Let S be an infinite set. For every non-empty subset T of S, we
select a definite element ar in T. We then proceed by induction. We let x, be the
chosen element ag. Suppose that we have chosen x, ..., x, having the property
that for each k = 2, ..., n the element x, is the selected element in the subset
which is the complement of {x,, ..., x,_,}. Welet x,, , be the selected element
in the complement of the set {x,,..., x,}. By induction, we thus obtain an
association n — x, for all positive integers n, and since x, # x, for all k < n it
follows that our association is injective, i.e. gives an enumeration of a subset of S.

Proposition 1.4. Let D be a denumerable set, and f:D — S a surjective
mapping. Then S is denumerable or finite.

Proof. For each ye S, there exists an element x, € D such that f(x,)) =y
because f is surjective. The association y — X, is an injective mapping of S
into D, because if

y,zeS and x,=x,

then
y=flx)=f(x;) =z

Let g(y) = x,. The image of g is a subset of D and D is denumerable. Since g
is a bijection between § and its image, it follows that S is denumerable or finite.

Proposition 1.5.  Let D be a denumerable set. Then D x D (the set of all pairs
(x, y) with x, y € D) is denumerable.

Proof. There s a bijection between D x Dand Z* x Z*, so it will suffice to
prove that Z* x Z* is denumerable. Consider the mappingof Z* x Z+* - Z*
given by

(m, n) > 2"3™,
It is injective, and by Proposition 1.1, our result follows.

Proposition 1.6. Let {D,, D,, . . .} be a sequence of denumerable sets. Let S
be the union of all sets D; (i = 1,2, ...). Then S is denumerable.
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Proof. Foreachi= 1,2, ... weenumerate the elements of D;, as indicated
in the following notation:

Dy: {xy11, X120, X135, 0}
Dy: {x31, X35, X23,...}

i AXin Xi2s X3, )

Themap f:Z* x Z* — D given by
f(l9.]) = xij

is then a surjective map of Z* x Z* onto S. By Proposition 1.4, it follows that
S is denumerable.

Corollary 1.7. Let F be a non-empty finite set and D a denumerable set. Then
F x D is denumerable. If S,, S,, ... are a sequence of sets, each of which is
finite or denumerable, then the union S; U S, U - - - is denumerable or finite.

Proof. Thereisan injectionof F into Z " and a bijection of Dwith Z*. Hence
there is an injection of F x Z* into Z* x Z™ and we can apply Corollary 1.2
and Proposition 1.6 to prove the first statement. One could also define a sur-
jective map of Z* x Z™ onto F x D. (Cf. Exercises 1 and 4.) As for the second
statement, each finite set is contained in some denumerable set, so that the second
statement follows from Proposition 1.1 and 1.6.

For convenience, we shall say that a set is countable if it is either finite or
denumerable.

§2. ZORN’'S LEMMA

In order to deal efficiently with infinitely many sets simultaneously, one needs
a special property. To state it, we need some more terminology.

Let S be a set. An ordering (also called partial ordering) of S is a relation,
written x £ y,amongsome pairs of elements of S, having the following properties.

ORD 1. We have x < x.
ORD2 Ifx=yandy < zthenx < z.
ORD3. Ifx<yandy < xthen x = y.
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We sometimes write y = xfor x < y. Notethat wedon’t require that therelation
x < yory £ xhold for every pair of elements (x, y) of S. Some pairs may not be
comparable. Ifthe ordering satisfies this additional property, then we say that it
is a total ordering.

Example 1. Let G be a group. Let S be the set of subgroups. If H, H' are
subgroups of G, we define

H=sH

if H is a subgroup of H'. One verifies immediately that this relation defines an
ordering on S. Given two subgroups H, H' of G, we do not necessarily have
H<HoHCZLH.

Example 2. Let R be aring, and let S be the set of left ideals of R. We define
an ordering in S in a way similar to the above, namely if L, L’ are left ideals of R,
we define

L<L
fLclL.

Example 3. Let X be a set, and S the set of subsets of X. If Y, Z are subsets
of X, we define Y < Z if Y is a subset of Z. This defines an ordering on S.

In all these examples, the relation of ordering is said to be that of inclusion.

In an ordered set, if x < y and x # y we then write x < y.

Let A be an ordered set,and B a subset. Then we can define an ordering on B
by defining x < yfor x, ye Bto hold ifand only if x < yin 4. We shall say that
R, is the ordering on B induced by R, or is the restriction to B of the partial
ordering of 4.

Let S be an ordered set. By a least element of S (or a smallest element) one
means an element a € S such that a < x for all xe S. Similarly, by a greatest
element one means an element b such that x < b for all xe S.

By a maximal element m of S one means an element such that if x € § and
X = m,then x = m. Note that a maximal element need not be a greatest element.
There may be many maximal elements in S, whereas if a greatest element exists,
then it is unique (proof ?).

Let S be an ordered set. We shall say that S is totally ordered if given x, ye §
we have necessarily x £ yor y £ x.

Example 4. The integers Z are totally ordered by the usual ordering. So
are the real numbers.

Let S be an ordered set, and T a subset. An upper bound of T (in S) is an
element b € S such that x < bfor all xe T. A least upper bound of T in S is an
upper bound b such that, if ¢ is another upper bound, then b < ¢. We shall say
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that S is inductively ordered if every non-empty totally ordered subset has an
upper bound.

We shall say that § is strictly inductively ordered if every non-empty totally
ordered subset has a least upper bound.

In Examples 1, 2, 3, in each case, the set is strictly inductively ordered. To
prove this, let us take Example 1. Let T be a non-empty totally ordered subset
of the set of subgroups of G. Thismeansthatif H,H' € T,thenH <« H'orH' = H.
Let U be the union of all sets in T. Then:

1. U is a subgroup. Proof: If x, ye U, there exist subgroups H, H' e T
such that xe Hand ye H'. If,say, H ¢ H’, then both x, y € H and hence
xye H'. Hence xyeU. Also, x 'eH’, so x 'eU. Hence U is a
subgroup.

2. U is an upper bound for each element of T. Proof: Every H e T is con-
tainedin U,so H S Uforall He T.

3. U is a least upper bound for T. Proof: Any subgroup of G which
contains all the subgroups H € T must then contain their union U.

The proof that the sets in Examples 2, 3 are strictly inductively ordered is
entirely similar.
We can now state the property mentioned at the beginning of the section.

Zorn’s Lemma. Let S be a non-empty inductively ordered set. Then there
exists a maximal element in S.

As an example of Zorn’s lemma, we shall now prove the infinite version of a
theorem given in Chapters 1, §7, and XIV, §2, namely:

Let R be an entire, principal ring and let E be a free module over R. Let F be a
submodule. Then F is free. In fact, if {v;};.; is a basis for E, and F # {0},
then there exists a basis for F indexed by a subset of I.

Proof. For each subset J of I we let E, be the free submodule of E generated
by all v;,jeJ,and we let F; = E; n F. We let S be the set of all pairs (F;, w)
where J isa subset of I, and w: J' — Fis a basis of F; indexed by a subset J' of J.
We write w; instead of w(j) for je J'. If (F;, w) and (F, u) are such pairs, we
define (F;,w) < (Fk,u) if J ¢ K, if J' = K', and if the restriction of u to J' is
equal to w. (In other words, the basis u for Fy is an extension of the basis w for
F,.) This defines an ordering on S, and it is immediately verified that S is in fact
inductively ordered, and non-empty (say by the finite case of the result). We can
therefore apply Zorn’s lemma. Let (F,, w) be a maximal element. We contend
that J = I (this will prove our result). SupposeJ # Iandletkelbutk¢J. Let
K=Julk} If

E_,U(k)ﬁF = FJ,
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then (Fg, w) is a bigger pair than (F,, w) contradicting the maximality assump-
tion. Qtherwise there exist elements of Fx which can be written in the form

cv, +y

with some y€ E; and ce R, ¢ # 0. The set of all elements ¢ € R such that there
exists y € E; for which cv, + y € F is an ideal. Let a be a generator of this ideal,
and let

w,=av, + Yy

be an element of F, with y € E;. If z € Fy then there exists b € R such that
z — bw, € E;. But z — bw; € F, whence z — bwy, € F;. It follows at once that
the family consisting of w; (j € J) and wy is a basis for Fy, thus contradicting the
maximality again. This proves what we wanted.

Zorn’s lemma could be just taken as an axiom of set theory. However, it is
not psychologically completely satisfactory as an axiom, because its statement
is too involved, and one does not visualize easily the existence of the maximal
element asserted in that statement. We show how one can prove Zorn’s lemma
from other properties of sets which everyone would immediately grant as ac-
ceptable psychologically.

From now on to the end of the proof of Theorem 2.1, we let A be a non-
empty partially ordered and strictly inductively ordered set. We recall that
strictly inductively ordered means that every nonempty totally ordered subset
has a least upper bound. We assume given a map f: 4 — A4 such that for all
xe€ A wehave x £ f(x). We could call such a map an increasing map.

Letae A. Let B be asubset of A. We shall say that B is admissible if:

1. B contains a.
2. We have f(B) < B.

3. Whenever T is a non-empty totally ordered subset of B, the least upper
bound of T in A lies in B.

Then B is also strictly inductively ordered, by the induced ordering of 4. We
shall prove:

Theorem 2.1. (Bourbaki). Let A be a non-empty partially ordered and
strictly inductively ordered set. Let f: A — A be an increasing mapping.
Then there exists an element x, € A such that f(x,) = Xg-

Proof. Suppose that A were totally ordered. By assumption, it would have
a least upper bound b € 4, and then

bs f(b)=b,
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so that in this case, our theorem is clear. The whole problem is to reduce the
theorem to that case. In other words, what we need to find is a totally ordered
admissible subset of A.

If we throw out of A4 all elements x € A such that x is not = a, then what
remains is obviously an admissible subset. Thus without loss of generality, we
may assume that A has a least element a, that is a < x for all x € A.

Let M be the intersection of all admissible subsets of A. Note that A itself is
an admissible subset, and that all admissible subsets of 4 contain a, so that M is
not empty. Furthermore, M is itself an admissible subset of A. To see this, let
x e M. Then x is in every admissible subset, so f(x) is also in every admissible
subset, and hence f(x)e M. Hence f(M) c M. If T is a totally ordered non-
empty subset of M, and b is the least upper bound of T in A, then b lies in every
admissible subset of 4, and hence lies in M. It follows that M is the smallest
admissible subset of 4, and that any admissible subset of 4 contained in M is
equal to M.

We shall prove that M is totally ordered, and thereby prove Theorem 2.1.

[First we make some remarks which don’t belong to the proof, but will help
in the understanding of the subsequent lemmas. Since ae M, we see that
fl@)eM, f o f(a)e M, and in general f"(a) e M. Furthermore,

A @S [

If we had an equality somewhere, we would be finished, so we may assume that
the inequalities hold. Let D, be the totally ordered set { f"(a)},»o. Then D,
looks like this:

a< fla)< fAa)<---< ffa)y<---.

Let a, be the least upper bound of D,. Then we can form
a; < fa) < f2a) <--
in the same way to obtain D,, and we can continue this process, to obtain
D,D,,....

It is clear that D,, D,, ... are contained in M. If we had a precise way of ex-
pressing the fact that we can establish a never-ending string of such denumerable
sets, then we would obtain what we want. The point is that we are now trying to
prove Zorn’s lemma, which is the natural tool for guaranteeing the existence of
such a string. However, given such a string, we observe that its elements have
two properties: If ¢ is an element of such a string and x < ¢, then f(x) < c.
Furthermore, there is no element between ¢ and f(c), that is if x is an element of
the string, then x < cor f(c) £ x. We shall now prove two lemmas which show
that elements of M have these properties.]
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Letce M. Weshall say that c is anextreme point of M if whenever x € M and
x < ¢, then f(x) < ¢. For each extreme point c € M we let

M,=setofxeM suchthat x<c¢ or f(c) < x.

Note that M, is not empty because a is in it.

Lemma 2.2. We have M, = M for every extreme point ¢ of M.

Proof. 1t will suffice to prove that M, is an admissible subset. Let xe M.
If x < ¢ then f(x) < c¢so f(x)e M,. If x = c then f(x) = f(c)is againin M_.
If f(c) £ x, then f(c) £ x £ f(x), so once more f(x)e M,.. Thus we have
proved that f(M,) c M..

Let T be a totally ordered subset of M_ and let b be the least upper bound of
Tin M. If all elements x e T are < ¢, thenb £ cand be M,. If some xe T is
such that f(c) < x,then f(c) £ x < b,andsobisin M,. This proves our lemma.

Lemma 2.3. Every element of M is an extreme point.

Proof. Let E be the set of extreme points of M. Then E is not empty because
a € E. 1t will suffice to prove that E is an admissible subset. We first prove that
fmaps Eintoitself. Letce E. Let x e M and suppose x < f(c). We must prove
that f(x) = f(c). By Lemma 2.2, M = M_, and hence we have x < ¢, orx = ¢,
or f(c) £ x. This last possibility cannot occur because x < f(c). If x <c¢
then

fx)sc= fo

If x = ¢ then f(x) = f(c), and hence f(E) < E.

Next let T be a totally ordered subset of E. Let b be the least upper bound
of Tin M. We must prove that b€ E. Letxe M and x < b. If forall c € T we
have f(c) = x, then ¢ = f(c) = x implies that x is an upper bound for 7', whence
b = x, which is impossible. Since M, = M for all ¢ € E, we must therefore
have x = ¢ for some c € T. If x < ¢, then f(x) = ¢ = b, and if x = ¢, then

c=x<b.

Since ¢ is an extreme point and M, = M, we get f(x) = b. This proves that
b € E, that E is admissible, and thus proves Lemma 2.3.

We now see trivially that M is totally ordered. For let x, ye M. Then xis an
extreme point of M by Lemma 2, and ye M, so y < x or

x < f(x) 2,

thereby proving that M is totally ordered. As remarked previously, this con-
cludes the proof of Theorem 2.1.
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We shall obtain Zorn’s lemma essentially as a corollary of Theorem 2.1.
We first obtain Zorn’s lemma in a slightly weaker form.

Corollary 2.4. Let A be a non-empty strictly inductively ordered set. Then A
has a maximal element.

Proof. Suppose that A does not have a maximal element. Then for each
x € A there exists an element y, € A such that x < y,. Let f: A — A be the map
such that f(x) = y, for all x € A. Then A, f satisfy the hypotheses of Theorem
2.1 and applying Theorem 2.1 yields a contradiction.

The only difference between Corollary 2.4 and Zorn’s lemma is that in
Corollary 2.4, we assume that a non-empty totally ordered subset has a least
upper bound, rather than an upper bound. It is, however, a simple matter to
reduce Zorn’s lemma to the seemingly weaker form of Corollary 2.4. We do
this in the second corollary.

Corollary 2.5. (Zorn’s lemma). Let S be a non-empty inductively ordered
set. Then S has a maximal element.

Proof. Let A be the set of non-empty totally ordered subsets of S. Then A4
is not empty since any subset of S with one element belongs to 4. If X, Y € 4,
we define X < Y to mean X < Y. Then A is partially ordered, and is in fact
strictly inductively ordered. Forlet T = {X,};., bea totally ordered subset of 4.
Let

Z={)X.
iel

Then Z is totally ordered. To see this, let x, ye Z. Then x€ X; and ye X for
some i, je I. Since T is totally ordered, say X; = X;. Then x, y € X; and since
X istotally ordered, x < yory £ x. Thus Z is totally ordered, and is obviously
a least upper bound for T in 4. By Corollary 2.4, we conclude that 4 has a
maximal element X ,. This means that X, is a maximal totally ordered subset of
S (non-empty). Let m be an upper bound for X, in S. Then m is the desired
maximal element of S. For if x e S and m £ x then X, U {x} is totally ordered,
whence equal to X, by the maximality of X,. Thus x € X, and x < m. Hence
X = m, as was to be shown.

§3. CARDINAL NUMBERS

Let A, B be sets. We shall say that the cardinality of A is the same as the
cardinality of B, and write

card(4) = card(B)

if there exists a bijection of 4 onto B.
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We say card(4) < card(B) if there exists an injective mapping (injection)
f:A— B. We also write card(B) = card(A4) in this case. It is clear that if
card(A) < card(B) and card(B) £ card(C), then card(A4) < card(C).

This amounts to saying that a composite of injective mappings is injective.
Similarly, if card(A4) = card(B) and card(B) = card(C) then card(A4) = card(C).
This amounts to saying that a composite of bijective mappings is bijective.

We clearly have card(A) = card(A). Using Zorn’s lemma, it is easy to show (see
Exercise 14) that

card(4) < card(B) or card(B) < card(4).
Let f: A — B be a surjective map of a set A onto a set B. Then
card(B) £ card(A).

This is easily seen, because for each y e B there exists an element x € 4,
denoted by x,, such that f(x,) = y. Then the association y — x, is an injective
mapping of B into A, whence by definition, card(B) < card(A).

Given two nonempty sets A, B we have card(A) = card(B) or card(B) < card(A).
This is a simple application of Zorn’s lemma. We consider the family of pairs

(S, f) where S is a subset of A and f: S — B is an injective mapping. From the
existence of a maximal element, the assertion follows at once.

Theorem 3.1. (Schroeder-Bernstein). Letr A, B be sets, and suppose that
card(A) £ card(B), and card(B) < card(A4). Then

card(A) = card(B).
Proof. Let
fiA->B and ¢g:B—- A
be injections. We separate A into two disjoint sets A; and A,. We let A; consist
of all x € A such that, when we lift back x by a succession of inverse maps,

x,9 M x), fTlogTix), g lef T teg T (x),...

then at some stage we reach an element of 4 which cannot be lifted back to B by
g. Welet A, be the complement of 4,, in other words, the set of x € A which can
be lifted back indefinitely, or such that we get stopped in B (i.e. reach an element
of Bwhich has no inverse imagein A by f). Then4 = 4, U A,. Weshalldefine
a bijection h of A onto B.

If x € 4,, we define h(x) = f(x).

If xeA,, we define h(x) = g~ '(x) = unique element ye B such that
g(y) = x.

Then trivially, h is injective. We must prove that h is surjective. Let be B.
If, when we try to lift back b by a succession of maps

o fThogThe fTle g fT(D)
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we can lift back indefinitely, or if we get stopped in B, then g (b) belongs to A,
and consequently b = h(g(b)), so b lies in the image of 4. On the other hand, if we
cannot lift back b indefinitely, and get stopped in A, then f~1(b) is defined
(i.e., b is in the image of f), and f~!(b) lies in 4;. In this case, b = h(f~'(b))
is also in the image of 4, as was to be shown.

Next we consider theorems concerning sums and products of cardinalities.

We shall reduce the study of cardinalities of products of arbitrary sets to the
denumerable case, using Zorn’s lemma. Note first that an infinite set 4 always
contains a denumerable set. Indeed, since A is infinite, we can first select an
element a, € A, and the complement of {a,} is infinite. Inductively, if we have
selected distinct elements a,, ..., q, in A, the complement of {a,,..., a,} is
infinite, and we can select a,,, in this complement. In this way, we obtain a
sequence of distinct elements of A4, giving rise to a denumerable subset of A.

Let A be a set. By a covering of A one means a set I of subsets of 4 such that
the union

Uc
Cerll

of all the elements of I is equal to 4. We shall say that I' is a disjoint covering if
whenever C, C'eT, and C # C, then the intersection of C and C’ is empty.

Lemma 3.2. Let A be an infinite set. Then there exists a disjoint covering of
A by denumerable sets.

Proof. Let S be the set whose elements are pairs (B, I') consisting of a
subset B of 4, and a disjoint covering of B by denumerable sets. Then S is not
empty. Indeed, since A is infinite, A contains a denumerable set D, and the pair
(D, {D})isin 8. If (B, I') and (B', I'") are elements of S, we define

(B,T) = (B,I)

tomean that B < B,and I' = I". Let T be a totally ordered non-empty subset
of S. We may write T = {(B;, I'})};.; for some indexing set I. Let

B=UB, and F=Url.

iel iel
If C, C'el’, C # (', then there exists some indices i, j such that CeI; and
C’eT;. Since T is totally ordered, we have, say,

(Bi’ rl) g (Bja F])

Hence in fact, C, C’ are both elements of I';, and hence C, C’ have an empty
intersection. On the other hand, if x € B, then x € B, for some i, and hence there
is some C € T'; such that x e C. Hence I is a disjoint covering of B. Since the
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elements of each I'; are denumerable subsets of A4, it follows that I is a disjoint
covering of B by denumerable sets, so (B, I') is in S, and is obviously an upper
bound for T. Therefore S is inductively ordered.

Let (M, A) be a maximal element of S, by Zorn’s lemma. Suppose that
M # A. Ifthe complement of M in 4 is infinite, then there exists a denumerable
set D contained in this complement. Then

(M uD,AuU{D})

is a bigger pair than (M, A), contradicting the maximality of (M, A). Hence the
complement of M in A is a finite set F. Let D, be an element of A. Let

Dl =DOUPw.

Then D, is denumerable. Let A, be the set consisting of all elements of A, except
D,, together with D,. Then A, is a disjoint covering of A by denumerable sets,
as was to be shown.

Theorem 3.3. Let A be an infinite set, and let D be a denumerable set. Then
card(A x D) = card(A).
Proof. By the lemma, we can write

AZUDI

iel
as a disjoint union of denumerable sets. Then

Ax D=J(D; x D).

iel

For each i € I, there is a bijection of D; x D on D; by Proposition 1.5. Since the
sets D; x D are disjoint, we get in this way a bijection of 4 x D on A, as desired.

Corollary 3.4. If F is a finite non-empty set, then
card(4 x F) = card(A).
Proof. We have
card(A4) < card(4 x F) £ card(4 x D) = card(A4).

We can then use Theorem 3.1 to get what we want.

Corollary 3.5. Let A, B be non-empty sets, A infinite, and suppose

card(B) < card(A4).
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Then
card(4 u B) = card(A).

Proof. We can write AU B = 4 U C for some subset C of B, such that C
and A4 aredisjoint. (Welet C be the set of all elements of B which are not elements
of A.) Then card(C) < card(4). We can then construct an injection of A U C
into the product

A x {1, 2}

of A with a set consisting of 2 elements. Namely, we have a bijection of 4 with
A x {1} in the obvious way, and also an injection of C into A x {2}. Thus

card(4 U C) £ card(4 x {l, 2}).

We conclude the proof by Corollary 3.4 and Theorem 3.1.

Theorem 3.6. Let A be an infinite set. Then
card(4 x A) = card(A).

Proof. Let S be the set consisting of pairs (B, f) where B is an infinite subset
of A, and f is a bijection of B onto B x B. Then S is not empty because if D is
a denumerable subset of 4, we can always find a bijection of D on D x D. If
(B, f) and (B, f') are in S, we define (B, f) < (B’, f') to mean B < B, and
the restriction of f’ to B is equal to f. Then § is partially ordered, and we con-
tend that S is inductively ordered. Let T be a non-empty totally ordered subset
of S, and say T consists of the pairs (B;, f;) for i in some indexing set 1. Let

M = iek)IBi.

We shall define a bijection g: M —- M x M. If x e M, then x lies in some B;.
We define g(x) = fi(x). This value fi(x) is independent of the choice of B; in
which x lies. Indeed, if x € B; for some j € I, then say

(Bi,.f) = (Bj, f)).

By assumption, B; < B;, and f(x) = fi(x), so g is well defined. To show g is
surjective, let x, ye M and (x, y)e M x M. Then x e B, for some iel and
y€ B;forsomejel. Againsince Tis totally ordered, say (B;, f;) < (B;, f). Thus
B; c Bj, and x, y € B;. There exists an element b € B; such that

f{b) = (x,y)eB; x B;.

By definition, g(b) = (x, y), so g is surjective. We leave the proof that g is
injective to the reader to conclude the proof that g is a bijection. We then see
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that (M, g) is an upper bound for T in S, and therefore that S is inductively
ordered.

Let (M, g) be a maximal element of S, and let C be the complement of M in A.
If card(C) < card(M), then

card(4) = card(M v C) = card(M)

by Corollary 3.5, and hence card(M) =card(4). Since card(M)=
card(M x M), we are done with the proof in this case. If

card(M) < card(C),
then there exists a subset M, of C having the same cardinality as M. We consider
MuM)x(MuM,)
=M x My)uM; x MyuM x M,)u(M,; x M,).

By the assumption on M and Corollary 3.5, the last three sets in parentheses on
the right of this equation have the same cardinality as M. Thus

MUM)xMUM)=(Mx MyuM,

where M, is disjoint from M x M, and has the same cardinality as M. We now
define a bijection

giI'M UM, -MuM))x (MuM,).

We let g,(x) = g(x)if x € M, and we let g, on M, be any bijection of M, on M.
In this way we have extended g to M U M, and the pair (M U M,,g,)isin S,
contradicting the maximality of (M, g). The case card(M) £ card(C) therefore
cannot occur, and our theorem is proved (using Exercise 14 below).

Corollary 3.7. If A is an infinite set,and A™ = A x --- x A is the product
taken n times, then

card(A™) = card(A).
Proof. Induction.

Corollary 3.8. IfA,, ..., A, are non-empty sets with A, infinite, and

card(4;) < card(4,)

fori=1,...,n,then

card(4, x --- x A,) = card(4,).
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Proof. We have
card(4,) < card(4; x --- x A,) < card(4, x --- X A4,)

and we use Corollary 3.7 and the Schroeder-Bernstein theorem to conclude the
proof.

Corollary 3.9. Let A be an infinite set, and let @ be the set of finite subsets
of A. Then

card(®) = card(A).

Proof. Let @, be the set of subsets of 4 having exactly n elements, for each
integern = 1,2,.... We first show that card(®,) < card(A). If F is an element
of @,, we order the elements of F in any way, say

F={x;..., %}
and we associate with F the element (x,, ..., x,) € A®,
Fr(xg,...,x,).

If G is another subset of A having n elements, say G = {y,, ..., y,},and G # F,
then

(X155 X)) # (V15 -0 Vo)
Hence our map
Fro(xy...,x,)
of @, into A™ is injective. By Corollary 3.7, we conclude that
card(®,) < card(A).

Now @ is the disjoint union of the @, for n = 1, 2, ... and it is an exercise to
show that card(®) £ card(A) (cf. Exercise 1). Since

card(4) £ card(®),

because in particular, card(®,) = card(4), we see that our corollary is proved.

In the next theorem, we shall see that given a set, there always exists another
set whose cardinality is bigger.

Theorem 3.10. Let A be an infinite set, and T the set consisting of two
elements {0, 1}. Let M be the set of all maps of A into T. Then

card(4) < card(M) and card(4) # card(M).
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Proof. For each x € A we let
fi:A-{0,1}

be the map such that f(x) = 1 and f.(y) = 0if y # x. Then x — f, is obviously
an injection of A into M, so that card(4) < card(M). Suppose that

card(A4) = card(M).
Let
X g,
be a bijection between 4 and M. We define a map h: A — {0, 1} by the rule
h(x) =0 if g(x) =1,
h(x)y=1 if gJ(x)=0.

Then certainly h # g, for any x, and this contradicts the assumption that x +— g,
is a bijection, thereby proving Theorem 3.10.

Corollary 3.11. Let A be an infinite set, and let S be the set of all subsets of A.
Then card(A) £ card(S) and card(4) # card(S).

Proof. We leave it as an exercise. [Hint: If B is a non-empty subset of 4,
use the characteristic function ¢g such that

op(x) =1 if xeB,
eg(x) =0 if x¢B.

What can you say about the association B+ ¢5?]

§4. WELL-ORDERING

An ordered set 4 is said to be well-ordered if it is totally ordered, and if every
non-empty subset B has a least element, that is, an element a € B such that
a < x for all xeB.

Example 1. The set of positive integers Z* is well-ordered. Any finite set
can be well-ordered, and a denumerabile set D can be well-ordered: Any bijection
of D with Z* will give rise to a well-ordering of D.

Example 2. Let S be a well-ordered set and let b be an element of some set,
b¢S. LetA =S u {b}. Wedefinex < bforall xeS. Then A is totally ordered,
and is in fact well-ordered.
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Proof. Let Bbe a non-empty subset of 4. If B consists of b alone, then b is a
least element of B. Otherwise, B contains some elementa e A. Then B n A isnot
empty, and hence has a least element, which is obviously also a least element for
B.

Theorem 4.1. Every non-empty set can be well-ordered.

Proof. Let A be a non-empty set.’ Let S be the set of all pairs (X, w), where
X isa subset of 4 and w is a well-ordering of X. Note that S is not empty because
any single element of A gives rise to such a pair. If (X, w) and (X', w’) are such
pairs, we define (X, w) = (X', ') if X C X/, if the ordering induced on X by
' is equal to w, and if X is an initial segment of X’. It is obvious that this
defines an ordering on S, and we contend that S is inductively ordered. Let
{(X;, w;)} be a totally ordered non-empty subset of S. Let X = U X;. Ifa,beX,
then a, b lie in some X;, and we define a = b in X if a = b with respect to the
ordering w;. This is independent of the choice of i (immediate from the assumption
of total ordering). In fact, X is well ordered, for if Y is a non-empty subset of
X, then there is some element y € Y which lies in some X;. Let ¢ be a least
element of X; N Y. One verifies at once that ¢ is a least element of Y. We can
therefore apply Zorn’s lemma. Let (X, w) be a maximal element in S. If X # A,
then, using Example 2, we can define a well-ordering on a bigger subset than
X, contradicting the maximality assumption. This proves Theorem 4.1.

Note. Theorem 4.1 is an immediate and straightforward consequence of
Zorn’s lemma. Usually in mathematics, Zorn’s lemma is the most efficient tool
when dealing with infinite processes.

EXERCISES

1. Prove the statement made in the proof of Corollary 3.9.
2. If Aisan infinite set, and ®, is the set of subsets of 4 having exactly n elements, show that

card(4) £ card(®,)

forn = 1.

3. Let A, be infinite sets for i = 1, 2, ... and assume that
card(4,) £ card(4)

for some set A, and all i. Show that

card(C) Ai) < card(A).
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Let K be a subfield of the complex numbers. Show that for each integer n = 1, the
cardinality of the set of extensions of K of degree n in C is = card(K).

. Let K be an infinite field, and E an algebraic extension of K. Show that

card(E) = card(K).

6. Finish the proof of the Corollary 3.11.
7. 1If A, B are sets, denote by M(A, B) the set of all maps of A into B. If B, B’ are sets with

10.

12.
13.

14.

the same cardinality, show that M(A4, B) and M(A, B’) have the same cardinality. If
A, A’ have the same cardinality, show that M(4, B) and M(A’, B) have the same
cardinality.

. Let A be an infinite set and abbreviate card(A) by a. If B is an infinite set, abbreviate

card(B) by B. Define af to be card(A X B). Let B’ be a set disjoint from A such that
card(B) = card(B’). Define a + B to be card(A U B’). Denote by BA the set of all maps
of A into B, and denote card(B*) by B°. Let C be an infinite set and abbreviate card(C)
by v. Prove the following statements:

(@) of +7)=af + ay.

(b) aff = pa.

(c) of*? = oo,

. Let K be an infinite field. Prove that there exists an algebraically closed field K*

containing K as a subfield, and algebraic over K. [Hint: Let Q be a set of cardinality
strictly greater than the cardinality of K, and containing K. Consider the set S of all
pairs (E, @) where E is a subset of Q such that K < E, and ¢ denotes a law of addition
and multiplication on E which makes E into a field such that K is a subfield, and E is
algebraic over K. Define a partial ordering on § in an obvious way; show that S is
inductively ordered, and that a maximal element is algebraic over K and algebraically
closed. You will need Exercise 5 in the last step.]

Let K be an infinite field. Show that the field of rational functions K(t) has the same
cardinality as K.

. Let J, be the set of integers {1, ..., n}. Let Z* be the set of positive integers. Show

that the following sets have the same cardinality:
(a) The set of all maps M(Z™, J,).
(b) The set of all maps M(Z*, J,).
(c) The set of all real numbers x such that 0 < x < 1.
(d) The set of all real numbers.

Show that M(Z™*, Z*) has the same cardinality as the real numbers.

Let S be a non-empty set. Let S’ denote the product S with itself taken denumerably
many times. Prove that (S')' has the same cardinality as S’. [Given a set S whose
cardinality is strictly greater than the cardinality of R, I do not know whether it is
always true that card § = card S’.] Added 1994: The grapevine communicates to me
that according to Solovay, the answer is “‘no.”

Let A, B be non—empty sets. Prove that
card(A) = card(B) or card(B) = card(A).

[Hint: consider the family of pairs (C, f) where C is a subset of A and f: C —> B is
an injective map. By Zorn’s lemma there is a maximal element. Now finish the proof].



